IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i3p1206-1229.html
   My bibliography  Save this article

Log‐density gradient covariance and automatic metric tensors for Riemann manifold Monte Carlo methods

Author

Listed:
  • Tore Selland Kleppe

Abstract

A metric tensor for Riemann manifold Monte Carlo particularly suited for nonlinear Bayesian hierarchical models is proposed. The metric tensor is built from symmetric positive semidefinite log‐density gradient covariance (LGC) matrices, which are also proposed and further explored here. The LGCs generalize the Fisher information matrix by measuring the joint information content and dependence structure of both a random variable and the parameters of said variable. Consequently, positive definite Fisher/LGC‐based metric tensors may be constructed not only from the observation likelihoods as is current practice, but also from arbitrarily complicated nonlinear prior/latent variable structures, provided the LGC may be derived for each conditional distribution used to construct said structures. The proposed methodology is highly automatic and allows for exploitation of any sparsity associated with the model in question. When implemented in conjunction with a Riemann manifold variant of the recently proposed numerical generalized randomized Hamiltonian Monte Carlo processes, the proposed methodology is highly competitive, in particular for the more challenging target distributions associated with Bayesian hierarchical models.

Suggested Citation

  • Tore Selland Kleppe, 2024. "Log‐density gradient covariance and automatic metric tensors for Riemann manifold Monte Carlo methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1206-1229, September.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:1206-1229
    DOI: 10.1111/sjos.12705
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12705
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    3. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    4. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    5. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    6. Kastner, Gregor, 2016. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
    7. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    8. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    9. Philipov, Alexander & Glickman, Mark E., 2006. "Multivariate Stochastic Volatility via Wishart Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 313-328, July.
    10. Alexander Philipov & Mark Glickman, 2006. "Factor Multivariate Stochastic Volatility via Wishart Processes," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 311-334.
    11. Oliver Grothe & Tore Selland Kleppe & Roman Liesenfeld, 2019. "The Gibbs sampler with particle efficient importance sampling for state-space models," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1152-1175, November.
    12. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    2. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    3. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    4. Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
    5. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    6. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    7. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    8. Ishihara, Tsunehiro & Omori, Yasuhiro & Asai, Manabu, 2016. "Matrix exponential stochastic volatility with cross leverage," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 331-350.
    9. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    10. Florian Huber & Daniel Kaufmann, 2020. "Trend Fundamentals and Exchange Rate Dynamics," Economica, London School of Economics and Political Science, vol. 87(348), pages 1016-1036, October.
    11. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    12. Topaloglou, Nikolas & Tsionas, Mike G., 2020. "Stochastic dominance tests," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    13. Ringwald, Leopold & Zörner, Thomas O., 2023. "The money-inflation nexus revisited," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 293-333.
    14. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    15. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    16. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    17. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    18. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    19. Garcia-Hiernaux, Alfredo & Gonzalez-Perez, Maria T. & Guerrero, David E., 2023. "Eurozone prices: A tale of convergence and divergence," Economic Modelling, Elsevier, vol. 126(C).
    20. Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:1206-1229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.