IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i2p697-723.html
   My bibliography  Save this article

On the expectations of equivariant matrix‐valued functions of Wishart and inverse Wishart matrices

Author

Listed:
  • Grant Hillier
  • Raymond M. Kan

Abstract

Many matrix‐valued functions of an m×m Wishart matrix W, Fk(W), say, are homogeneous of degree k in W, and are equivariant under the conjugate action of the orthogonal group 𝒪(m), that is, Fk(HWHT)=HFk(W)HT, H∈𝒪(m). It is easy to see that the expectation of such a function is itself homogeneous of degree k in ∑, the covariance matrix, and are also equivariant under the action of 𝒪(m) on ∑. The space of such homogeneous, equivariant, matrix‐valued functions is spanned by elements of the type Wrpλ(W), where r∈{0,…,k} and, for each r, λ varies over the partitions of k−r, and pλ(W) denotes the power‐sum symmetric function indexed by λ. In the analogous case where W is replaced by W−1, these elements are replaced by W−rpλ(W−1). In this paper, we derive recurrence relations and analytical expressions for the expectations of such functions. Our results provide highly efficient methods for the computation of all such moments.

Suggested Citation

  • Grant Hillier & Raymond M. Kan, 2024. "On the expectations of equivariant matrix‐valued functions of Wishart and inverse Wishart matrices," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 697-723, June.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:2:p:697-723
    DOI: 10.1111/sjos.12707
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12707
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grant Hillier & Raymond Kan, 2021. "Moments of a Wishart Matrix," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 141-162, December.
    2. Haff, L. R., 1979. "An identity for the Wishart distribution with applications," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 531-544, December.
    3. P. Graczyk & G. Letac & H. Massam, 2005. "The Hyperoctahedral Group, Symmetric Group Representations and the Moments of the Real Wishart Distribution," Journal of Theoretical Probability, Springer, vol. 18(1), pages 1-42, January.
    4. Gérard Letac & Hélène Massam, 2004. "All Invariant Moments of the Wishart Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(2), pages 295-318, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubokawa, Tatsuya & Hyodo, Masashi & Srivastava, Muni S., 2013. "Asymptotic expansion and estimation of EPMC for linear classification rules in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 496-515.
    2. Sho Matsumoto, 2012. "General Moments of the Inverse Real Wishart Distribution and Orthogonal Weingarten Functions," Journal of Theoretical Probability, Springer, vol. 25(3), pages 798-822, September.
    3. Andrew F. Siegel & Artemiza Woodgate, 2007. "Performance of Portfolios Optimized with Estimation Error," Management Science, INFORMS, vol. 53(6), pages 1005-1015, June.
    4. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    5. K. Krishnamoorthy, 1991. "Estimation of a common multivariate normal mean vector," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(4), pages 761-771, December.
    6. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.
    7. Nardo, Elvira Di, 2020. "Polynomial traces and elementary symmetric functions in the latent roots of a non-central Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    8. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    9. Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
    10. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    11. Anatolyev, Stanislav, 2012. "Inference in regression models with many regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 368-382.
    12. Elfessi, Abdulaziz & Chun Jin, 1996. "On robust estimation of the common scale parameter of several Pareto distributions," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 345-352, September.
    13. Tsai, Ming-Tien, 2007. "Maximum likelihood estimation of Wishart mean matrices under Löwner order restrictions," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 932-944, May.
    14. Zongliang Hu & Zhishui Hu & Kai Dong & Tiejun Tong & Yuedong Wang, 2021. "A shrinkage approach to joint estimation of multiple covariance matrices," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 339-374, April.
    15. Chang, Ching-Hui & Pal, Nabendu, 2008. "Testing on the common mean of several normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 321-333, December.
    16. Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.
    17. Kubokawa, Tatsuya & Tsai, Ming-Tien, 2006. "Estimation of covariance matrices in fixed and mixed effects linear models," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2242-2261, November.
    18. Letac, Gérard & Massam, Hélène, 2008. "The noncentral Wishart as an exponential family, and its moments," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1393-1417, August.
    19. Tsukuma, Hisayuki, 2010. "Shrinkage priors for Bayesian estimation of the mean matrix in an elliptically contoured distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1483-1492, July.
    20. Tsai, Ming-Tien & Kubokawa, Tatsuya, 2007. "Estimation of Wishart mean matrices under simple tree ordering," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 945-959, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:2:p:697-723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.