IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v25y2012i3d10.1007_s10959-011-0340-0.html
   My bibliography  Save this article

General Moments of the Inverse Real Wishart Distribution and Orthogonal Weingarten Functions

Author

Listed:
  • Sho Matsumoto

    (Nagoya University)

Abstract

We study a random positive definite symmetric matrix distributed according to a real Wishart distribution. We compute general moments of the random matrix and of its inverse explicitly. To do so, we employ the orthogonal Weingarten function, which was recently introduced in the study of Haar-distributed orthogonal matrices. As applications, we give formulas for moments of traces of a Wishart matrix and its inverse.

Suggested Citation

  • Sho Matsumoto, 2012. "General Moments of the Inverse Real Wishart Distribution and Orthogonal Weingarten Functions," Journal of Theoretical Probability, Springer, vol. 25(3), pages 798-822, September.
  • Handle: RePEc:spr:jotpro:v:25:y:2012:i:3:d:10.1007_s10959-011-0340-0
    DOI: 10.1007/s10959-011-0340-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-011-0340-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-011-0340-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Letac, Gérard & Massam, Hélène, 2008. "The noncentral Wishart as an exponential family, and its moments," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1393-1417, August.
    2. Satoshi Kuriki & Yasuhide Numata, 2010. "Graph presentations for moments of noncentral Wishart distributions and their applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(4), pages 645-672, August.
    3. P. Graczyk & G. Letac & H. Massam, 2005. "The Hyperoctahedral Group, Symmetric Group Representations and the Moments of the Real Wishart Distribution," Journal of Theoretical Probability, Springer, vol. 18(1), pages 1-42, January.
    4. Gérard Letac & Hélène Massam, 2004. "All Invariant Moments of the Wishart Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(2), pages 295-318, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bavaud, François, 2023. "Exact first moments of the RV coefficient by invariant orthogonal integration," Journal of Multivariate Analysis, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grant Hillier & Raymond Kan, 2021. "Moments of a Wishart Matrix," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 141-162, December.
    2. Di Nardo, Elvira, 2014. "On a symbolic representation of non-central Wishart random matrices with applications," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 121-135.
    3. Nardo, Elvira Di, 2020. "Polynomial traces and elementary symmetric functions in the latent roots of a non-central Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    4. Anatolyev, Stanislav, 2012. "Inference in regression models with many regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 368-382.
    5. Piotr Graczyk & Hideyuki Ishi & Salha Mamane, 2019. "Wishart exponential families on cones related to tridiagonal matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 439-471, April.
    6. Zongliang Hu & Zhishui Hu & Kai Dong & Tiejun Tong & Yuedong Wang, 2021. "A shrinkage approach to joint estimation of multiple covariance matrices," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 339-374, April.
    7. Letac, Gérard & Massam, Hélène, 2018. "The Laplace transform (dets)−pexptr(s−1w) and the existence of non-central Wishart distributions," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 96-110.
    8. Letac, Gérard & Massam, Hélène, 2008. "The noncentral Wishart as an exponential family, and its moments," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1393-1417, August.
    9. Kubokawa, Tatsuya & Hyodo, Masashi & Srivastava, Muni S., 2013. "Asymptotic expansion and estimation of EPMC for linear classification rules in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 496-515.
    10. Marcos Escobar & Sven Panz, 2016. "A Note on the Impact of Parameter Uncertainty on Barrier Derivatives," Risks, MDPI, vol. 4(4), pages 1-25, September.
    11. Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
    12. Klein, Daniel & Pielaszkiewicz, Jolanta & Filipiak, Katarzyna, 2022. "Approximate normality in testing an exchangeable covariance structure under large- and high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    13. Tatsuya Kubokawa & Masashi Hyodo & Muni S. Srivastava, 2011. "Asymptotic Expansion and Estimation of EPMC for Linear Classification Rules in High Dimension," CIRJE F-Series CIRJE-F-818, CIRJE, Faculty of Economics, University of Tokyo.
    14. Jin-Ting Zhang & Xuefeng Liu, 2013. "A modified Bartlett test for heteroscedastic one-way MANOVA," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 135-152, January.
    15. M. Capitaine & M. Casalis, 2007. "Cumulants for Random Matrices as Convolutions on the Symmetric Group, II," Journal of Theoretical Probability, Springer, vol. 20(3), pages 505-533, September.
    16. van Wieringen, Wessel N., 2017. "On the mean squared error of the ridge estimator of the covariance and precision matrix," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 88-92.
    17. Daya K. Nagar & Alejandro Roldán-Correa & Saralees Nadarajah, 2023. "Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix," Mathematics, MDPI, vol. 11(9), pages 1-14, May.
    18. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility using state space models," Papers 0802.0223, arXiv.org.
    19. C. Emily I. Redelmeier, 2011. "Genus Expansion for Real Wishart Matrices," Journal of Theoretical Probability, Springer, vol. 24(4), pages 1044-1062, December.
    20. Ouimet, Frédéric, 2022. "A symmetric matrix-variate normal local approximation for the Wishart distribution and some applications," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:25:y:2012:i:3:d:10.1007_s10959-011-0340-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.