IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i4p1064-1089.html
   My bibliography  Save this article

Hypothesis testing for quantitative trait locus effects in both location and scale in genetic backcross studies

Author

Listed:
  • Guanfu Liu
  • Pengfei Li
  • Yukun Liu
  • Xiaolong Pu

Abstract

Testing the existence of a quantitative trait locus (QTL) effect is an important task in QTL mapping studies. Most studies concentrate on the case where the phenotype distributions of different QTL groups follow normal distributions with the same unknown variance. In this paper we make a more general assumption that the phenotype distributions come from a location‐scale distribution family. We derive the limiting distribution of the likelihood ratio test (LRT) for the existence of the QTL effect in both location and scale in genetic backcross studies. We further identify an explicit representation for this limiting distribution. As a complement, we study the limiting distribution of the LRT and its explicit representation for the existence of the QTL effect in the location only. The asymptotic properties of the LRTs under a local alternative are also investigated. Simulation studies are used to evaluate the asymptotic results, and a real‐data example is included for illustration.

Suggested Citation

  • Guanfu Liu & Pengfei Li & Yukun Liu & Xiaolong Pu, 2020. "Hypothesis testing for quantitative trait locus effects in both location and scale in genetic backcross studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1064-1089, December.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1064-1089
    DOI: 10.1111/sjos.12442
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12442
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Hong & Chen, Hanfeng & Li, Zhaohai, 2008. "An explicit representation of the limit of the LRT for interval mapping of quantitative trait loci," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 207-213, February.
    2. Gu, Jiaying & Koenker, Roger & Volgushev, Stanislav, 2018. "Testing For Homogeneity In Mixture Models," Econometric Theory, Cambridge University Press, vol. 34(4), pages 850-895, August.
    3. Chang Myron N & Wu Rongling & Wu Samuel S & Casella George, 2009. "Score Statistics for Mapping Quantitative Trait Loci," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-37, February.
    4. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2019. "Empirical Process Results for Exchangeable Arrays," Papers 1906.11293, arXiv.org, revised May 2020.
    2. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    3. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    4. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    5. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    6. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    7. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    8. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    9. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    10. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    11. Denis Koshelev & Alexey Ponomarenko & Sergei Seleznev, 2023. "Amortized neural networks for agent-based model forecasting," Papers 2308.05753, arXiv.org.
    12. Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.
    13. Yao Luo & Peijun Sang, 2022. "Penalized Sieve Estimation of Structural Models," Papers 2204.13488, arXiv.org.
    14. Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
    15. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    16. Kristi Kuljus & Bo Ranneby, 2020. "Asymptotic normality of generalized maximum spacing estimators for multivariate observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 968-989, September.
    17. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2018. "Asymptotic results under multiway clustering," Papers 1807.07925, arXiv.org, revised Aug 2018.
    18. Dominic Edelmann & Tobias Terzer & Donald Richards, 2021. "A Basic Treatment of the Distance Covariance," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 12-25, May.
    19. A Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Osman Shami & Alexander Teytelboym, 2024. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," Journal of the European Economic Association, European Economic Association, vol. 22(2), pages 781-836.
    20. Clément de Chaisemartin & Xavier D'Haultfœuille, 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, American Economic Association, vol. 110(9), pages 2964-2996, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1064-1089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.