IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i4p891-910.html
   My bibliography  Save this article

Higher Moments and Prediction-Based Estimation for the COGARCH(1,1) Model

Author

Listed:
  • Enrico Bibbona
  • Ilia Negri

Abstract

type="main" xml:id="sjos12142-abs-0001"> COGARCH models are continuous time versions of the well-known GARCH models of financial returns. The first aim of this paper is to show how the method of prediction-based estimating functions can be applied to draw statistical inference from observations of a COGARCH(1,1) model if the higher-order structure of the process is clarified. A second aim of the paper is to provide recursive expressions for the joint moments of any fixed order of the process. Asymptotic results are given, and a simulation study shows that the method of prediction-based estimating function outperforms the other available estimation methods.

Suggested Citation

  • Enrico Bibbona & Ilia Negri, 2015. "Higher Moments and Prediction-Based Estimation for the COGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 891-910, December.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:4:p:891-910
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12142
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Haug & C. Klüppelberg & A. Lindner & M. Zapp, 2007. "Method of moment estimation in the COGARCH(1,1) model," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 320-341, July.
    2. Ross A. Maller & Gernot Muller & Alex Szimayer, 2008. "GARCH modelling in continuous time for irregularly spaced time series data," Papers 0805.2096, arXiv.org.
    3. Michael Sørensen, 2011. "Prediction-based estimating functions: review and new developments," CREATES Research Papers 2011-05, Department of Economics and Business Economics, Aarhus University.
    4. Michael Sørensen, 2000. "Prediction-based estimating functions," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 123-147.
    5. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiago do Rêgo Sousa & Robert Stelzer, 2022. "Moment‐based estimation for the multivariate COGARCH(1,1) process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 681-717, June.
    2. Jingyan Zhang & Jan De Spiegeleer & Wim Schoutens, 2021. "Implied Tail Risk and ESG Ratings," Mathematics, MDPI, vol. 9(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kallsen Jan & Muhle-Karbe Johannes, 2011. "Method of moment estimation in time-changed Lévy models," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 169-194, May.
    2. Thiago do Rêgo Sousa & Robert Stelzer, 2022. "Moment‐based estimation for the multivariate COGARCH(1,1) process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 681-717, June.
    3. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    4. Rodríguez Bernal, M. T. & Romero, Eva, 2013. "Data cloning estimation of GARCH and COGARCH models," DES - Working Papers. Statistics and Econometrics. WS ws132723, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Rodríguez-Bernal, M. T. & Romero, E., 2016. "ABC and Hamiltonian Monte-Carlo methods in COGARCH models," DES - Working Papers. Statistics and Econometrics. WS ws1601, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Anne Brix & Asger Lunde, 2015. "Prediction-based estimating functions for stochastic volatility models with noisy data: comparison with a GMM alternative," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 433-465, October.
    7. Asger Lunde & Anne Floor Brix, 2013. "Estimating Stochastic Volatility Models using Prediction-based Estimating Functions," CREATES Research Papers 2013-23, Department of Economics and Business Economics, Aarhus University.
    8. Lee, Oesook, 2012. "V-uniform ergodicity of a continuous time asymmetric power GARCH(1,1) model," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 812-817.
    9. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, September.
    10. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    11. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    12. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    13. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    14. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    15. William T. Shaw & Thomas Luu & Nick Brickman, 2009. "Quantile Mechanics II: Changes of Variables in Monte Carlo methods and GPU-Optimized Normal Quantiles," Papers 0901.0638, arXiv.org, revised Dec 2011.
    16. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    17. Paolo Guasoni & Eberhard Mayerhofer, 2020. "Technical Note—Options Portfolio Selection," Operations Research, INFORMS, vol. 68(3), pages 733-740, May.
    18. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    19. David Scott & Diethelm Würtz & Christine Dong & Thanh Tran, 2011. "Moments of the generalized hyperbolic distribution," Computational Statistics, Springer, vol. 26(3), pages 459-476, September.
    20. Iacus, Stefano M. & Mercuri, Lorenzo & Rroji, Edit, 2017. "COGARCH(p, q): Simulation and Inference with the yuima Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i04).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:4:p:891-910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.