IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i3p848-871.html
   My bibliography  Save this article

Mixture Model Analysis of Partially Rank-Ordered Set Samples: Age Groups of Fish from Length-Frequency Data

Author

Listed:
  • Armin Hatefi
  • Mohammad Jafari Jozani
  • Omer Ozturk

Abstract

type="main" xml:id="sjos12140-abs-0001"> We present a novel methodology for estimating the parameters of a finite mixture model (FMM) based on partially rank-ordered set (PROS) sampling and use it in a fishery application. A PROS sampling design first selects a simple random sample of fish and creates partially rank-ordered judgement subsets by dividing units into subsets of prespecified sizes. The final measurements are then obtained from these partially ordered judgement subsets. The traditional expectation–maximization algorithm is not directly applicable for these observations. We propose a suitable expectation–maximization algorithm to estimate the parameters of the FMMs based on PROS samples. We also study the problem of classification of the PROS sample into the components of the FMM. We show that the maximum likelihood estimators based on PROS samples perform substantially better than their simple random sample counterparts even with small samples. The results are used to classify a fish population using the length-frequency data.

Suggested Citation

  • Armin Hatefi & Mohammad Jafari Jozani & Omer Ozturk, 2015. "Mixture Model Analysis of Partially Rank-Ordered Set Samples: Age Groups of Fish from Length-Frequency Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 848-871, September.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:848-871
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12140
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Jinguo & Ozturk, Omer, 2012. "Two sample distribution-free inference based on partially rank-ordered set samples," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 876-884.
    2. Furman, W. David & Lindsay, Bruce G., 1994. "Measuring the relative effectiveness of moment estimators as starting values in maximizing likelihoods," Computational Statistics & Data Analysis, Elsevier, vol. 17(5), pages 493-507, June.
    3. Gang Zheng & Mohammad Al-Saleh, 2002. "Modified Maximum Likelihood Estimators Based on Ranked Set Samples," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(3), pages 641-658, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    2. Yiu-Fai Yung, 1997. "Finite mixtures in confirmatory factor-analysis models," Psychometrika, Springer;The Psychometric Society, vol. 62(3), pages 297-330, September.
    3. Jesse Frey & Timothy G. Feeman, 2017. "Efficiency comparisons for partially rank-ordered set sampling," Statistical Papers, Springer, vol. 58(4), pages 1149-1163, December.
    4. Marianthi Markatou, 2000. "Mixture Models, Robustness, and the Weighted Likelihood Methodology," Biometrics, The International Biometric Society, vol. 56(2), pages 483-486, June.
    5. Cesar Augusto Taconeli & Suely Ruiz Giolo, 2020. "Maximum likelihood estimation based on ranked set sampling designs for two extensions of the Lindley distribution with uncensored and right-censored data," Computational Statistics, Springer, vol. 35(4), pages 1827-1851, December.
    6. Gang Zheng & Mohammad Al-Saleh, 2003. "Improving the best linear unbiased estimator for the scale parameter of symmetric distributions by using the absolute value of ranked set samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(3), pages 253-265.
    7. Siyu Yang & Ansheng Deng & Hui Cui, 2023. "Statistical Image Watermark Algorithm for FAPHFMs Domain Based on BKF–Rayleigh Distribution," Mathematics, MDPI, vol. 11(23), pages 1-25, November.
    8. Yusuf Can Sevil & Tugba Ozkal Yildiz, 2022. "Gumbel’s bivariate exponential distribution: estimation of the association parameter using ranked set sampling," Computational Statistics, Springer, vol. 37(4), pages 1695-1726, September.
    9. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:848-871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.