IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v35y2008i4p664-676.html
   My bibliography  Save this article

Building and Fitting Non‐Gaussian Latent Variable Models via the Moment‐Generating Function

Author

Listed:
  • TORE SELLAND KLEPPE
  • HANS J. SKAUG

Abstract

. For certain classes of hierarchical models, it is easy to derive an expression for the joint moment‐generating function (MGF) of data, whereas the joint probability density has an intractable form which typically involves an integral. The most important example is the class of linear models with non‐Gaussian latent variables. Parameters in the model can be estimated by approximate maximum likelihood, using a saddlepoint‐type approximation to invert the MGF. We focus on modelling heavy‐tailed latent variables, and suggest a family of mixture distributions that behaves well under the saddlepoint approximation (SPA). It is shown that the well‐known normalization issue renders the ordinary SPA useless in the present context. As a solution we extend the non‐Gaussian leading term SPA to a multivariate setting, and introduce a general rule for choosing the leading term density. The approach is applied to mixed‐effects regression, time‐series models and stochastic networks and it is shown that the modified SPA is very accurate.

Suggested Citation

  • Tore Selland Kleppe & Hans J. Skaug, 2008. "Building and Fitting Non‐Gaussian Latent Variable Models via the Moment‐Generating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 664-676, December.
  • Handle: RePEc:bla:scjsta:v:35:y:2008:i:4:p:664-676
    DOI: 10.1111/j.1467-9469.2008.00611.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2008.00611.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2008.00611.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John L. Knight & Stephen E. Satchell & Jun Yu, 2002. "Theory & Methods: Estimation of the Stochastic Volatility Model by the Empirical Characteristic Function Method," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 44(3), pages 319-335, September.
    2. Verbeke, Geert & Lesaffre, Emmanuel, 1997. "The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 541-556, February.
    3. O. E. Barndorff‐Nielsen & C. Kluppelberg, 1999. "Tail Exactness of Multivariate Saddlepoint Approximations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(2), pages 253-264, June.
    4. Daowen Zhang & Marie Davidian, 2001. "Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data," Biometrics, The International Biometric Society, vol. 57(3), pages 795-802, September.
    5. Serge Darolles & Christian Gourieroux & Joann Jasiak, 2006. "Structural Laplace Transform and Compound Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(4), pages 477-503, July.
    6. Skaug, Hans J. & Fournier, David A., 2006. "Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 699-709, November.
    7. S. Huzurbazar & Aparna V. Huzurbazar, 1999. "Survival and Hazard Functions for Progressive Diseases Using Saddlepoint Approximations," Biometrics, The International Biometric Society, vol. 55(1), pages 198-203, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Zhang & Peter X.-K. Song & Annie Qu & Tom Greene, 2008. "Efficient Estimation for Patient-Specific Rates of Disease Progression Using Nonnormal Linear Mixed Models," Biometrics, The International Biometric Society, vol. 64(1), pages 29-38, March.
    2. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    3. Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2021. "Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models," International Statistical Review, International Statistical Institute, vol. 89(1), pages 186-206, April.
    4. Warrington Nicole M. & Tilling Kate & Howe Laura D. & Paternoster Lavinia & Pennell Craig E. & Wu Yan Yan & Briollais Laurent, 2014. "Robustness of the linear mixed effects model to error distribution assumptions and the consequences for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(5), pages 567-587, October.
    5. Daniel McNeish & Jeffrey R. Harring & Denis Dumas, 2023. "A multilevel structured latent curve model for disaggregating student and school contributions to learning," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 545-575, June.
    6. Jacqmin-Gadda, Helene & Sibillot, Solenne & Proust, Cecile & Molina, Jean-Michel & Thiebaut, Rodolphe, 2007. "Robustness of the linear mixed model to misspecified error distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5142-5154, June.
    7. Li, Erning & Pourahmadi, Mohsen, 2013. "An alternative REML estimation of covariance matrices in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1071-1077.
    8. Jara, Alejandro & Quintana, Fernando & San Marti­n, Ernesto, 2008. "Linear mixed models with skew-elliptical distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5033-5045, July.
    9. Reyhaneh Rikhtehgaran & Iraj Kazemi, 2013. "Semi-parametric Bayesian estimation of mixed-effects models using the multivariate skew-normal distribution," Computational Statistics, Springer, vol. 28(5), pages 2007-2027, October.
    10. Rendao Ye & Tonghui Wang & Saowanit Sukparungsee & Arjun Gupta, 2015. "Tests in variance components models under skew-normal settings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 885-904, October.
    11. Weiping Zhang & MengMeng Zhang & Yu Chen, 2020. "A Copula-Based GLMM Model for Multivariate Longitudinal Data with Mixed-Types of Responses," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-379, November.
    12. Loy, Adam & Hofmann, Heike, 2014. "HLMdiag: A Suite of Diagnostics for Hierarchical Linear Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i05).
    13. Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
    14. Philip S. Boonstra & Bhramar Mukherjee & Jeremy M. G. Taylor & Mef Nilbert & Victor Moreno & Stephen B. Gruber, 2011. "Bayesian Modeling for Genetic Anticipation in Presence of Mutational Heterogeneity: A Case Study in Lynch Syndrome," Biometrics, The International Biometric Society, vol. 67(4), pages 1627-1637, December.
    15. Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
    16. Huang, Pei & McCarl, Bruce A., 2014. "Estimating Decadal Climate Variability Effects on Crop Yields: A Bayesian Hierarchical Approach," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169828, Agricultural and Applied Economics Association.
    17. Zeinolabedin Najafi & Karim Zare & Mohammad Reza Mahmoudi & Soheil Shokri & Amir Mosavi, 2022. "Inference and Local Influence Assessment in a Multifactor Skew-Normal Linear Mixed Model," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
    18. Wendimagegn Ghidey & Emmanuel Lesaffre & Paul Eilers, 2004. "Smooth Random Effects Distribution in a Linear Mixed Model," Biometrics, The International Biometric Society, vol. 60(4), pages 945-953, December.
    19. Charles E. McCulloch & John M. Neuhaus, 2011. "Prediction of Random Effects in Linear and Generalized Linear Models under Model Misspecification," Biometrics, The International Biometric Society, vol. 67(1), pages 270-279, March.
    20. Vock, David & Davidian, Marie & Tsiatis, Anastasios, 2014. "SNP_NLMM: A SAS Macro to Implement a Flexible Random Effects Density for Generalized Linear and Nonlinear Mixed Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(c02).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:35:y:2008:i:4:p:664-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.