IDEAS home Printed from https://ideas.repec.org/a/bla/rgscpp/v15y2023i8p1702-1721.html
   My bibliography  Save this article

Spatio‐temporal patterns of the impact of COVID‐19 on public transit: An exploratory analysis from Lyon, France

Author

Listed:
  • Benjamin Cottreau
  • Adel Adraoui
  • Ouassim Manout
  • Louafi Bouzouina

Abstract

Public transit has been highly impacted by coronavirus disease 2019 (COVID‐19), as well as transport demand in general. Using high‐resolution data from smart card systems, this research investigates spatial and temporal variability of the pandemic's impact on public transit in Lyon, France. The study was conducted with a sample of 95,779 daily records, distributed over years (2019, 2020, and 2021) and public transit stops (520 bus rapid transit stops, 88 tramway stops, and 40 subway stops). Clustering and statistical methods are used to assess changes observed in the data. Findings highlight variability between modes in terms of intensity of impacts, recovery patterns, and stability of the shock over time. Results show that central areas recover worse than peripheral areas and west stops recover worse than east stops. Globally, effects of COVID‐19 clear up over time, but not totally, with a faster recovery for subway. Local analysis on specific stops also suggests that public transit associated with medical facilities endures less COVID‐19 impacts than employment zones or universities. El transporte público se ha visto muy afectado por la enfermedad del coronavirus 2019 (COVID‐19), así como la demanda de transporte en general. Utilizando datos de alta resolución procedentes de sistemas de tarjetas inteligentes, esta investigación estudia la variabilidad espacial y temporal del impacto de la pandemia en el transporte público de Lyon (Francia). El estudio se realizó con una muestra de 95.779 registros diarios, distribuidos en tres años (2019, 2020 y 2021) y de paradas de transporte público (520 paradas de autobús de tránsito rápido, 88 paradas de tranvía y 40 paradas de metro). Se utilizaron métodos estadísticos y de agrupación para evaluar los cambios observados en los datos. Los resultados ponen de relieve la variabilidad intermodal en términos de la intensidad de los impactos, los patrones de recuperación y la estabilidad de la perturbación a lo largo del tiempo. Los resultados muestran que las zonas centrales se recuperan peor que las periféricas y las paradas del oeste peor que las del este. En total, los efectos de COVID‐19 desaparecen con el tiempo, pero no totalmente, con una recuperación más rápida para el metro. El análisis local sobre paradas específicas también sugiere que el transporte público asociado a instalaciones médicas soporta menos impactos de COVID‐19 que las zonas de empleo o las universidades. 公共交通機関は、輸送需要全般と同様に、新型コロナウイルス感染症(COVID‐19)による大きな影響を受けている。本研究では、スマートカードシステムの高解像度データを使用して、フランスのリヨンの公共交通機関に対するパンデミックの影響の空間的および時間的変動を調査する。この研究は、2019年、2020年、及び2021年に配信された95,779件の毎日の記録からのサンプル、および公共交通機関の駅又は停留所(バス高速輸送システムの520の停留所、トラムの88の駅、地下鉄の40の駅)を対象に実施した。データから観察された変化を評価するために、クラスタリングおよび統計的手法を用いた。調査結果から、影響の大きさ、回復パターン、および時間の経過に伴うショックの不変性に関して、交通機関の種類によってばらつきがあることが強調される。その結果、中心部は周辺部よりも回復が遅れており、西部の駅又は停留所は東部よりも回復が遅れていることがわかった。COVID‐19の影響は、時間の経過とともに明確になるが、世界的に見て、完全にではないものの、地下鉄の回復が早い。また、特定の駅又は停留所に関する地域分析から、医療施設に関連する公共交通機関は、雇用ゾーンや大学よりもCOVID‐19による影響が少ないことが示唆される。

Suggested Citation

  • Benjamin Cottreau & Adel Adraoui & Ouassim Manout & Louafi Bouzouina, 2023. "Spatio‐temporal patterns of the impact of COVID‐19 on public transit: An exploratory analysis from Lyon, France," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(8), pages 1702-1721, October.
  • Handle: RePEc:bla:rgscpp:v:15:y:2023:i:8:p:1702-1721
    DOI: 10.1111/rsp3.12718
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rsp3.12718
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rsp3.12718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Menno Yap & Oded Cats, 2021. "Predicting disruptions and their passenger delay impacts for public transport stops," Transportation, Springer, vol. 48(4), pages 1703-1731, August.
    2. Bouzouina, Louafi & Baraklianos, Ioannis & Bonnel, Patrick & Aissaoui, Hind, 2021. "Renters vs owners: The impact of accessibility on residential location choice. Evidence from Lyon urban area, France (1999–2013)," Transport Policy, Elsevier, vol. 109(C), pages 72-84.
    3. Bagdatli, Muhammed Emin Cihangir & Ipek, Fatima, 2022. "Transport mode preferences of university students in post-COVID-19 pandemic," Transport Policy, Elsevier, vol. 118(C), pages 20-32.
    4. Wojciech Kazimierz Szczepanek & Maciej Kruszyna, 2022. "The Impact of COVID-19 on the Choice of Transport Means in Journeys to Work Based on the Selected Example from Poland," Sustainability, MDPI, vol. 14(13), pages 1-9, June.
    5. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Shixiong & Cai, Canhuang, 2022. "Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China," Transport Policy, Elsevier, vol. 127(C), pages 158-170.
    2. Baudains, Peter & Kalatian, Arash & Choudhury, Charisma F. & Manley, Ed, 2024. "Social inequality and the changing patterns of travel in the pandemic and post-pandemic era," Journal of Transport Geography, Elsevier, vol. 118(C).
    3. Yang, Ziqi & Li, Xinghua & Guo, Yuntao & Qian, Xinwu, 2023. "Understanding active transportation accessibility's impacts on polycentric and monocentric cities' housing price," Research in Transportation Economics, Elsevier, vol. 98(C).
    4. Hanumantha Rao Sama & Long-Sheng Chen & Venkateswarlu Nalluri & Madhavaiah Chendragiri, 2023. "Enhancing service quality of rural public transport during the COVID-19 pandemic: a novel fuzzy approach," Public Transport, Springer, vol. 15(2), pages 479-501, June.
    5. Xu, Xinyue & Liu, Jing & Zhang, Anzhong & XieLan, Shiyu & Li, Zinuo & Liu, Jun & Ran, Bin, 2024. "The impacts of COVID-19 on route choice with guidance information in urban rail transit of megacities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    6. Zhang, Haoyu & Wu, Weiwei & Jiang, Yu & Chen, Xinyuan, 2024. "Flight delay propagation in the multiplex network system of airline networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    7. Iliopoulou, Christina & Makridis, Michail A., 2023. "Critical multi-link disruption identification for public transport networks: A multi-objective optimization framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    8. Navarrete-Hernandez, Pablo & Rennert, Lindiwe & Balducci, Alessandro, 2023. "An evaluation of the impact of COVID-19 safety measures in public transit spaces on riders' Worry of virus contraction," Transport Policy, Elsevier, vol. 131(C), pages 1-12.
    9. Ishibashi, Sumiko & Kobayashi, Taiki & Taniguchi, Mamoru, 2024. "Does emphasis change in transportation mode choice affect workers’ actual mode choice? Implications from Japan in the COVID-19 era," Transport Policy, Elsevier, vol. 146(C), pages 343-355.
    10. Wojciech Kazimierz Szczepanek & Maciej Kruszyna, 2022. "The Impact of COVID-19 on the Choice of Transport Means in Journeys to Work Based on the Selected Example from Poland," Sustainability, MDPI, vol. 14(13), pages 1-9, June.
    11. Ruiying Li & Qiang Dong & Wenting Ma & Rui Kang, 2023. "A test-based methodology for the probabilistic assessment of system resilience under random disturbances," Journal of Risk and Reliability, , vol. 237(4), pages 671-685, August.
    12. Pengjun Zhao & Yukun Gao, 2023. "Discovering the long-term effects of COVID-19 on jobs–housing relocation," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-17, December.
    13. Zhang, Yongping & Manley, Ed & Martens, Karel & Batty, Michael, 2024. "A metro smart card data-based analysis of group travel behaviour in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 114(C).
    14. Abdoul Razac Sané & Pierre-Olivier Vandanjon & Rachid Belaroussi & Pierre Hankach, 2025. "A comprehensive investigation of variational auto-encoders for population synthesis," Journal of Computational Social Science, Springer, vol. 8(1), pages 1-34, February.
    15. Moon-Jong Jang & Taehoon Kim & Eunsung Oh, 2023. "Data-Driven Modeling of Vehicle-to-Grid Flexibility in Korea," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    16. Purim Srisawat & Wuyi Zhang & Kassara Sukpatch & Wachira Wichitphongsa, 2023. "Tourist Behavior and Sustainable Tourism Policy Planning in the COVID-19 Era: Insights from Thailand," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    17. Pengxiang Ding & Suwei Feng & Jianning Jiang, 2023. "The Impact of Urban Rail Transit Epidemic Prevention Measures on Passengers’ Safety Perception," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
    18. S Srivatsa Srinivas, 2023. "To increase or to decrease the price? Managing public transport queues during COVID-19 in the presence of strategic commuters," Public Transport, Springer, vol. 15(1), pages 275-285, March.
    19. Asif Raza & Muhammad Safdar & Ming Zhong & John Douglas Hunt, 2022. "Analyzing Spatial Location Preference of Urban Activities with Mode-Dependent Accessibility Using Integrated Land Use–Transport Models," Land, MDPI, vol. 11(8), pages 1-31, July.
    20. Hong, Seo-Young & Cho, Shin-Hyung & Park, Ho-Chul, 2024. "Behavioral differences between young adults and elderly travelers concerning the crowding effect on public transit after the COVID-19 pandemic," Research in Transportation Economics, Elsevier, vol. 106(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rgscpp:v:15:y:2023:i:8:p:1702-1721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1757-7802 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.