IDEAS home Printed from https://ideas.repec.org/a/bla/rgscpp/v15y2023i3p541-558.html
   My bibliography  Save this article

COVID‐19 and income profile: How communities in the United States responded to mobility restrictions in the pandemic's early stages

Author

Listed:
  • Qianqian Sun
  • Weiyi Zhou
  • Aliakbar Kabiri
  • Aref Darzi
  • Songhua Hu
  • Hannah Younes
  • Lei Zhang

Abstract

Mobility interventions in communities play a critical role in containing a pandemic at an early stage. The real‐world practice of social distancing can enlighten policymakers and help them implement more efficient and effective control measures. A lack of such research using real‐world observations initiates this article. We analyzed the social distancing performance of 66,149 census tracts from 3,142 counties in the United States with a specific focus on income profile. Six daily mobility metrics, including a social distancing index, stay‐at‐home percentage, miles traveled per person, trip rate, work trip rate, and non‐work trip rate, were produced for each census tract using the location data from over 100 million anonymous devices on a monthly basis. Each mobility metric was further tabulated by three perspectives of social distancing performance: “best performance,” “effort,” and “consistency.” We found that for all 18 indicators, high‐income communities demonstrated better social distancing performance. Such disparities between communities of different income levels are presented in detail in this article. The comparisons across scenarios also raise other concerns for low‐income communities, such as employment status, working conditions, and accessibility to basic needs. This article lays out a series of facts extracted from real‐world data and offers compelling perspectives for future discussions. Las intervenciones en materia de movilidad en las comunidades desempeñan un papel fundamental en la contención de una pandemia en una fase temprana. La práctica real del distanciamiento social puede informar a los responsables políticos y ayudarles a aplicar medidas de control más eficientes y eficaces. La falta de investigación en este ámbito con observaciones del mundo real ha originado este artículo. Se analizaron los resultados del distanciamiento social de 66149 secciones censales de 3142 condados de los Estados Unidos, poniendo interés específicamente en el perfil de ingresos. A partir de los datos de localización de más de 100 millones de dispositivos anónimos y una periodicidad mensual, se elaboraron seis métricas de movilidad diaria para cada zona censal: índice de distanciamiento social, porcentaje de personas que se quedan en casa, millas recorridas por persona, índice de desplazamientos, índice de desplazamientos al lugar de trabajo e índice de desplazamientos no laborales. Cada métrica de movilidad se tabuló además según tres perspectivas de eficacia del distanciamiento social: "mejor eficacia", "esfuerzo" y "uniformidad". Se descubrió que, para los 18 indicadores, las comunidades con altos ingresos mostraban mejores resultados de distanciamiento social. Estas disparidades entre comunidades de distintos niveles de ingresos se presentan detalladamente en este artículo. Las comparaciones entre escenarios también plantean otras preocupaciones para las comunidades con bajos ingresos, como la situación laboral, las condiciones de trabajo y el acceso a las necesidades básicas. Este artículo expone una serie de hechos extraídos de datos del mundo real y ofrece perspectivas convincentes para futuras consideraciones. コミュニティにおけるモビリティ介入は、パンデミックを早期に封じ込める上で重要な役割を果たす。実社会におけるソーシャルディスタンスの実施は、政策立案者を啓発し、より効率的かつ効果的な規制措置の実施に役立つものである。実社会における観察調査を用いたこの分野の研究が行われていないことが、本稿のきっかけである。本稿では、米国の3,142郡の66,149の国勢調査区域におけるソーシャルディスタンスの実施を、特に所得プロファイルに注目して分析する。一月あたり1億台以上の匿名デバイスから得られる位置データを使用して、国勢調査区域ごとに、ソーシャルディスタンス指数、自宅待機率、一人あたりの移動距離 (マイル)、移動率、通勤移動率、通勤以外での移動率など、日々の移動に関する6項目の指標を測定した。移動に関する各指標は、さらにソーシャルディスタンスの実施を3つの視点(「実施の優良性」、「努力」、「一貫性」)に分類して集計した。その結果、18の指標すべてにおいて、高所得者層のソーシャルディスタンスの実施度がより高いことが明らかになった。このような所得水準の異なるコミュニティ間の格差について、本稿で詳述する。シナリオ間の比較から、低所得コミュニティにとって他の懸念、すなわち雇用状況、労働条件、必需品へのアクセスのしやすさなどの問題が明らかになった。本稿では、実社会のデータから抽出された一連の事実を説明し、今後議論するべき切迫した問題を提起する。

Suggested Citation

  • Qianqian Sun & Weiyi Zhou & Aliakbar Kabiri & Aref Darzi & Songhua Hu & Hannah Younes & Lei Zhang, 2023. "COVID‐19 and income profile: How communities in the United States responded to mobility restrictions in the pandemic's early stages," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(3), pages 541-558, April.
  • Handle: RePEc:bla:rgscpp:v:15:y:2023:i:3:p:541-558
    DOI: 10.1111/rsp3.12598
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rsp3.12598
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rsp3.12598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brzezinski, Adam & Deiana, Guido & Kecht, Valentin & Van Dijcke, David, 2020. "The COVID-19 Pandemic: Government vs. Community Action Across the United States," INET Oxford Working Papers 2020-06, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    2. Yun Qiu & Xi Chen & Wei Shi, 2020. "Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1127-1172, October.
    3. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    4. Fang, Hanming & Wang, Long & Yang, Yang, 2020. "Human mobility restrictions and the spread of the Novel Coronavirus (2019-nCoV) in China," Journal of Public Economics, Elsevier, vol. 191(C).
    5. Selene Ghisolfi & Ingvild Almås & Justin Sandefur & Tillmann von Carnap & Jesse Heitner & Tessa Bold, 2020. "Predicted COVID-19 Fatality Rates Based on Age, Sex, Comorbidities, and Health System Capacity," Working Papers 535, Center for Global Development.
    6. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    7. Jonathan Jay & Jacob Bor & Elaine O. Nsoesie & Sarah K. Lipson & David K. Jones & Sandro Galea & Julia Raifman, 2020. "Neighbourhood income and physical distancing during the COVID-19 pandemic in the United States," Nature Human Behaviour, Nature, vol. 4(12), pages 1294-1302, December.
    8. Ibrahim Sirkeci & Mustafa Murat Yucesahin, 2020. "Coronavirus and Migration: Analysis of Human Mobility and the Spread of Covid-19," Migration Letters, Migration Letters, vol. 17(2), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badi H. Baltagi & Ying Deng & Jing Li & Zhenlin Yang, 2023. "Cities in a pandemic: Evidence from China," Journal of Regional Science, Wiley Blackwell, vol. 63(2), pages 379-408, March.
    2. Gabrielle Wills, 2016. "Principal leadership changes in South Africa: Investigating their consequences for school performance," Working Papers 01/2016, Stellenbosch University, Department of Economics.
    3. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    4. Christian Volpe Martincus & Jerónimo Carballo, 2010. "Is Export Promotion Effective in Developing Countries? Firm-Level Evidence on the Intensive and Extensive Margins of Exports," IDB Publications (Working Papers) 36763, Inter-American Development Bank.
    5. Chen, Simiao & Jin, Zhangfeng & Bloom, David E., 2020. "Act Early to Prevent Infections and Save Lives: Causal Impact of Diagnostic Efficiency on the COVID-19 Pandemic," IZA Discussion Papers 13749, Institute of Labor Economics (IZA).
    6. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    7. Cui Zhang & Dandan Zhang, 2023. "Spatial Interactions and the Spread of COVID-19: A Network Perspective," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 383-405, June.
    8. Petri Böckerman & Alex Bryson & Pekka Ilmakunnas, 2013. "Does high involvement management lead to higher pay?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(4), pages 861-885, October.
    9. Volpe Martincus, Christian & Carballo, Jerónimo, 2010. "Beyond the average effects: The distributional impacts of export promotion programs in developing countries," Journal of Development Economics, Elsevier, vol. 92(2), pages 201-214, July.
    10. Anders Stenberg & Xavier Luna & Olle Westerlund, 2014. "Does Formal Education for Older Workers Increase Earnings? — Evidence Based on Rich Data and Long-term Follow-up," LABOUR, CEIS, vol. 28(2), pages 163-189, June.
    11. Maxim Ananyev & Michael Poyker & Yuan Tian, 2021. "The safest time to fly: pandemic response in the era of Fox News," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(3), pages 775-802, July.
    12. Klaus F. Zimmermann & Gokhan Karabulut & Mehmet Huseyin Bilgin & Asli Cansin Doker, 2020. "Inter‐country distancing, globalisation and the coronavirus pandemic," The World Economy, Wiley Blackwell, vol. 43(6), pages 1484-1498, June.
    13. Keyang Li & Yu Qin & Jing Wu & Jubo Yan, 2023. "Perceived economic prospects during the early stage of COVID‐19 breakout," Contemporary Economic Policy, Western Economic Association International, vol. 41(4), pages 696-713, October.
    14. Wu, Jianxin & Zhan, Xiaoling & Xu, Hui & Ma, Chunbo, 2023. "The economic impacts of COVID-19 and city lockdown: Early evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 151-165.
    15. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    16. Heinrich, Carolyn J. & Mueser, Peter R. & Troske, Kenneth & Jeon, Kyung-Seong & Kahvecioglu, Daver C., 2009. "New Estimates of Public Employment and Training Program Net Impacts: A Nonexperimental Evaluation of the Workforce Investment Act Program," IZA Discussion Papers 4569, Institute of Labor Economics (IZA).
    17. Li, Xun & Lai, Weizheng & Wan, Qianqian & Chen, Xi, 2022. "Role of professionalism in response to the COVID-19 pandemic: Does a public health or medical background help?," China Economic Review, Elsevier, vol. 71(C).
    18. Mauro Caselli & Andrea Fracasso & Sergio Scicchitano, 2022. "From the lockdown to the new normal: individual mobility and local labor market characteristics following the COVID-19 pandemic in Italy," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1517-1550, October.
    19. Mario Liebensteiner, 2014. "Estimating the Income Gain of Seasonal Labor Migration," Review of Development Economics, Wiley Blackwell, vol. 18(4), pages 667-680, November.
    20. Christian Volpe Martincus & Jerónimo Carballo, 2010. "Entering new country and product markets: does export promotion help?," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 146(3), pages 437-467, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rgscpp:v:15:y:2023:i:3:p:541-558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1757-7802 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.