IDEAS home Printed from https://ideas.repec.org/a/bla/rgscpp/v15y2023i3p456-473.html
   My bibliography  Save this article

Climate influences on COVID‐19 prevalence rates: An application of a panel data spatial model

Author

Listed:
  • Joebson Maurilio Alves dos Santos
  • Tatiane Almeida de Menezes
  • Rodrigo Gomes de Arruda
  • Flávia Emília Cavalcante Valença Fernandes

Abstract

The present study aims to measure the impact of climate characteristics on the prevalence rate of coronavirus disease 2019 (COVID‐19) in Brazilian states given the exogenous nature of these variables. We used a daily panel for the period from March 10 to April 10, 2020, the first phase of the pandemic, as there were few intervention policies to contain the spread of COVID‐19 during that period, and it was estimated through generalized least squares (GLS) spatial models to control the presence of spatial spillover, first‐order autoregressive errors, and correlation between cross‐sections. Considering the COVID‐19 incubation period and the time it takes for COVID‐19 symptoms to manifest, the econometric models were estimated using the 14‐, 11‐, and 7‐day moving averages of the climate variables. The results showed that increases of 1% in the solar incidence, average temperature, and relative humidity of the air reduced COVID‐19 prevalence rates by 0.16%, 0.049%, and 0.22%, respectively, considering the 11‐day moving average. El presente estudio tiene como objetivo medir el impacto de las características climáticas en la prevalencia de la enfermedad por coronavirus 2019 (COVID‐19) en los estados brasileños, dada la naturaleza exógena de estas variables. Se utilizó un panel diario para el período comprendido entre el 10 de marzo y el 10 de abril de 2020, la primera fase de la pandemia, ya que hubo pocas políticas de intervención para contener la propagación de COVID‐19 durante ese período, y se estimó mediante modelos espaciales de mínimos cuadrados generalizados (GLS) para controlar la presencia de spillover espacial, errores autorregresivos de primer orden y la correlación entre muestras representativas. Teniendo en cuenta el periodo de incubación de COVID‐19 y el tiempo que tardan en manifestarse los síntomas de COVID‐19, los modelos econométricos se estimaron utilizando las medias móviles de 14, 11 y 7 días de las variables climáticas. Los resultados mostraron que aumentos del 1% en la incidencia solar, la temperatura media y la humedad relativa del aire redujeron la prevalencia de COVID‐19 en un 0,16%, 0,049% y 0,22%, respectivamente, teniendo en cuenta la media móvil de 11 días. 本稿では、ブラジルの各州における新型コロナウイルス感染症 (COVID‐19)の罹患率に対する気候特性の影響を、これらの変数の外因性を考慮して、測定する。パンデミックの第一波である2020年3月10日~4月10日の期間は、COVID‐19の拡散を封じ込めるための介入政策がほとんどなかったが、この期間の毎日のパネルデータを使用し、一般化最小二乗法 (GLS)による空間モデルを用いて、空間スピルオーバー、1次自己回帰のエラー、および横断面間の相関の存在を制御して、推定した。COVID‐19の潜伏期間と発症までにかかる時間を考慮し、気候変数の14、11、7日間の移動平均を用いて計量経済モデルを推定した。結果から、11日間の移動平均を考慮すると、太陽光の入射、平均気温、空気中の相対湿度の1%増加が、それぞれCOVID‐19罹患率を0.16%、 0.049%、0.22%減少させることが示された。

Suggested Citation

  • Joebson Maurilio Alves dos Santos & Tatiane Almeida de Menezes & Rodrigo Gomes de Arruda & Flávia Emília Cavalcante Valença Fernandes, 2023. "Climate influences on COVID‐19 prevalence rates: An application of a panel data spatial model," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(3), pages 456-473, April.
  • Handle: RePEc:bla:rgscpp:v:15:y:2023:i:3:p:456-473
    DOI: 10.1111/rsp3.12504
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rsp3.12504
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rsp3.12504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Allcott, Hunt & Boxell, Levi & Conway, Jacob & Gentzkow, Matthew & Thaler, Michael & Yang, David, 2020. "Polarization and public health: Partisan differences in social distancing during the coronavirus pandemic," Journal of Public Economics, Elsevier, vol. 191(C).
    2. Borjas, George J., 2020. "Demographic Determinants of Testing Incidence and COVID-19 Infections in New York City Neighborhoods," IZA Discussion Papers 13115, Institute of Labor Economics (IZA).
    3. Nicolás Ajzenman & Tiago Cavalcanti & Daniel Da Mata, 2023. "More than Words: Leaders' Speech and Risky Behavior during a Pandemic," American Economic Journal: Economic Policy, American Economic Association, vol. 15(3), pages 351-371, August.
    4. Shana Kushner Gadarian & Sara Wallace Goodman & Thomas B Pepinsky, 2021. "Partisanship, health behavior, and policy attitudes in the early stages of the COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-13, April.
    5. Mariani, Lucas Argentieri & Gagete-Miranda, Jessica & Rettl, Paula, 2020. "Words can hurt: how political communication can change the pace of an epidemic," OSF Preprints ps2wx, Center for Open Science.
    6. Jean-Noël Barrot & Basile Grassi & Julien Sauvagnat, 2021. "Sectoral Effects of Social Distancing," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 277-281, May.
    7. Nicola Scafetta, 2020. "Distribution of the SARS-CoV-2 Pandemic and Its Monthly Forecast Based on Seasonal Climate Patterns," IJERPH, MDPI, vol. 17(10), pages 1-34, May.
    8. Daniel Hoechle, 2007. "Robust standard errors for panel regressions with cross-sectional dependence," Stata Journal, StataCorp LP, vol. 7(3), pages 281-312, September.
    9. Nicolás Ajzenman & Tiago Cavalcanti & Daniel Da Mata, 2020. "More than Words: Leaders' Speech and Risky Behavior During a Pandemic," Department of Economics Working Papers wp_gob_2020_03, Universidad Torcuato Di Tella.
    10. Cavalcanti, Tiago & Ajzenman, Nicolas & da Mata, Daniel, 2020. "More than Words: Leaders’ Speech and Risky Behavior During a Pandemic," CEPR Discussion Papers 14707, C.E.P.R. Discussion Papers.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Freira & Marco Sartorio & Cynthia Boruchowicz & Florencia Lopez Boo & Joaquin Navajas, 2021. "The interplay between partisanship, forecasted COVID-19 deaths, and support for preventive policies," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-10, December.
    2. Maxim Ananyev & Michael Poyker & Yuan Tian, 2021. "The safest time to fly: pandemic response in the era of Fox News," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(3), pages 775-802, July.
    3. Block, Ray & Burnham, Michael & Kahn, Kayla & Peng, Rachel & Seeman, Jeremy & Seto, Christopher, 2022. "Perceived risk, political polarization, and the willingness to follow COVID-19 mitigation guidelines," Social Science & Medicine, Elsevier, vol. 305(C).
    4. Guglielmo Briscese & Maddalena Grignani & Stephen Stapleton, 2022. "Crises and Political Polarization: Towards a Better Understanding of the Timing and Impact of Shocks and Media," Papers 2202.12339, arXiv.org, revised Feb 2023.
    5. Bruce, Raphael & Cavgias, Alexsandros & Meloni, Luis & Remígio, Mário, 2022. "Under pressure: Women’s leadership during the COVID-19 crisis," Journal of Development Economics, Elsevier, vol. 154(C).
    6. Aksoy, Cevat Giray & Ganslmeier, Michael & Poutvaara, Panu, 2020. "Public Attention and Policy Responses to COVID-19 Pandemic," IZA Discussion Papers 13427, Institute of Labor Economics (IZA).
    7. Seres, Gyula & Balleyer, Anna Helen & Cerutti, Nicola & Danilov, Anastasia & Friedrichsen, Jana & Liu, Yiming & Süer, Müge, 2021. "Face masks increase compliance with physical distancing recommendations during the COVID-19 pandemic," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7(2), pages 139-158.
    8. Deiana, Claudio & Geraci, Andrea & Mazzarella, Gianluca & Sabatini, Fabio, 2022. "Can relief measures nudge compliance in a public health crisis? Evidence from a kinked fiscal policy rule," Journal of Economic Behavior & Organization, Elsevier, vol. 202(C), pages 407-428.
    9. Rafkin, Charlie & Shreekumar, Advik & Vautrey, Pierre-Luc, 2021. "When guidance changes: Government stances and public beliefs," Journal of Public Economics, Elsevier, vol. 196(C).
    10. Cavgias, Alexsandros & Bruce, Raphael & Meloni, Luis, 2023. "Policy enforcement in the presence of organized crime: Evidence from Rio de Janeiro," Journal of Development Economics, Elsevier, vol. 162(C).
    11. Tian, Yuan & Caballero, Maria Esther & Kovak, Brian K., 2022. "Social learning along international migrant networks," Journal of Economic Behavior & Organization, Elsevier, vol. 195(C), pages 103-121.
    12. Andrea Fazio & Tomasso Reggiani & Fabio Sabatini, 2021. "The political cost of lockdown´s enforcement," MUNI ECON Working Papers 2021-04, Masaryk University, revised Feb 2023.
    13. Khan, Adnan & Nasim, Sanval & Shaukat, Mahvish & Stegmann, Andreas, 2021. "Building trust in the state with information: Evidence from urban Punjab," Journal of Public Economics, Elsevier, vol. 202(C).
    14. Alexandre Gori Maia & Jose Daniel Morales Martinez & Leticia Junqueira Marteleto & Cristina Guimaraes Rodrigues & Luiz Gustavo Sereno, 2023. "Can the Content of Social Networks Explain Epidemic Outbreaks?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 42(1), pages 1-34, February.
    15. Leonardo Bursztyn & Aakaash Rao & Christopher Roth & David Yanagizawa-Drott, 2020. "Misinformation During a Pandemic," Working Papers 2020-44, Becker Friedman Institute for Research In Economics.
    16. Seres, Gyula & Balleyer, Anna & Cerutti, Nicola & Friedrichsen, Jana & Süer, Müge, 2021. "Face mask use and physical distancing before and after mandatory masking: No evidence on risk compensation in public waiting lines," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 765-781.
    17. Fazio, Andrea & Reggiani, Tommaso & Sabatini, Fabio, 2022. "The political cost of sanctions: Evidence from COVID-19," Health Policy, Elsevier, vol. 126(9), pages 872-878.
    18. Chiara Natalie Focacci & Pak Hung Lam & Yu Bai, 2022. "Choosing the right COVID-19 indicator: crude mortality, case fatality, and infection fatality rates influence policy preferences, behaviour, and understanding," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-8, December.
    19. Antoci, Angelo & Sabatini, Fabio & Sacco, Pier Luigi & Sodini, Mauro, 2022. "Experts vs. policymakers in the COVID-19 policy response," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 22-39.
    20. Deiana, Claudio & Geraci, Andrea & Mazzarella, Gianluca & Sabatini, Fabio, 2021. "COVID-19 Relief Programs and Compliance with Confinement Measures," IZA Discussion Papers 14064, Institute of Labor Economics (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rgscpp:v:15:y:2023:i:3:p:456-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1757-7802 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.