IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v32y2023i8p2596-2618.html
   My bibliography  Save this article

Coordinated charging station search in stochastic environments: A multiagent approach

Author

Listed:
  • Marianne Guillet
  • Maximilian Schiffer

Abstract

Range and charge anxiety remain essential barriers to a faster electric vehicle (EV) market diffusion. To this end, quickly and reliably finding suitable charging stations may foster an EV uptake by mitigating drivers' anxieties. Here, existing commercial services help drivers to find available stations based on real‐time availability data but struggle with data inaccuracy, for example, due to conventional vehicles blocking the access to public charging stations. In this context, recent works have studied stochastic search methods to account for availability uncertainty in order to minimize a driver's detour until reaching an available charging station. So far, both practical and theoretical approaches ignore driver coordination enabled by charging requests centralization or sharing of data, for example, sharing observations of charging stations' availability or visit intentions between drivers. Against this background, we study coordinated stochastic search algorithms, which help to reduce station visit conflicts and improve the drivers' charging experience. We model a multiagent stochastic charging station search problem as a finite‐horizon Markov decision process and introduce an online solution framework applicable to static and dynamic policies. In contrast to static policies, dynamic policies account for information updates during policy planning and execution. We present a hierarchical implementation of a single‐agent heuristic for decentralized decision making and a rollout algorithm for centralized decision making. Extensive numerical studies show that compared to an uncoordinated setting, a decentralized setting with visit intentions sharing decreases the system cost by 26%, which is nearly as good as the 28% cost decrease achieved in a centralized setting. Even in long planning horizons, our algorithm reduces the system cost by 25% while increasing each driver's search reliability.

Suggested Citation

  • Marianne Guillet & Maximilian Schiffer, 2023. "Coordinated charging station search in stochastic environments: A multiagent approach," Production and Operations Management, Production and Operations Management Society, vol. 32(8), pages 2596-2618, August.
  • Handle: RePEc:bla:popmgt:v:32:y:2023:i:8:p:2596-2618
    DOI: 10.1111/poms.13997
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13997
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    2. Ehsan Jafari & Stephen D. Boyles, 2017. "Multicriteria Stochastic Shortest Path Problem for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 17(3), pages 1043-1070, September.
    3. Goodson, Justin C. & Thomas, Barrett W. & Ohlmann, Jeffrey W., 2017. "A rollout algorithm framework for heuristic solutions to finite-horizon stochastic dynamic programs," European Journal of Operational Research, Elsevier, vol. 258(1), pages 216-229.
    4. Nicholas D. Kullman & Justin C. Goodson & Jorge E. Mendoza, 2021. "Electric Vehicle Routing with Public Charging Stations," Transportation Science, INFORMS, vol. 55(3), pages 637-659, May.
    5. Warren B. Powell, 2009. "What you should know about approximate dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 239-249, April.
    6. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Song & Shi, Lefeng, 2024. "EV diffusion promotion analysis under different charging market structure," Technological Forecasting and Social Change, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2022. "A Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision State Rollout Algorithm in Reinforcement Learning," Mathematics, MDPI, vol. 10(15), pages 1-70, July.
    3. Basso, Rafael & Kulcsár, Balázs & Sanchez-Diaz, Ivan & Qu, Xiaobo, 2022. "Dynamic stochastic electric vehicle routing with safe reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    4. Yongxing Wang & Jun Bi & Chaoru Lu & Cong Ding, 2020. "Route Guidance Strategies for Electric Vehicles by Considering Stochastic Charging Demands in a Time-Varying Road Network," Energies, MDPI, vol. 13(9), pages 1-24, May.
    5. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    6. Hu, Qinru & Hu, Simon & Shen, Shiyu & Ouyang, Yanfeng & Chen, Xiqun (Michael), 2025. "Optimizing autonomous electric taxi operations with integrated mobile charging services: An approximate dynamic programming approach," Applied Energy, Elsevier, vol. 378(PB).
    7. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    8. Xiao, Baichun & Yang, Wei, 2021. "A Bayesian learning model for estimating unknown demand parameter in revenue management," European Journal of Operational Research, Elsevier, vol. 293(1), pages 248-262.
    9. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    10. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    11. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    12. Tengkuo Zhu & Stephen D. Boyles & Avinash Unnikrishnan, 2024. "Battery Electric Vehicle Traveling Salesman Problem with Drone," Networks and Spatial Economics, Springer, vol. 24(1), pages 49-97, March.
    13. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    14. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    15. John E. Fontecha & Oscar O. Guaje & Daniel Duque & Raha Akhavan-Tabatabaei & Juan P. Rodríguez & Andrés L. Medaglia, 2020. "Combined maintenance and routing optimization for large-scale sewage cleaning," Annals of Operations Research, Springer, vol. 286(1), pages 441-474, March.
    16. Wei, Xiaoyang & Jia, Shuai & Meng, Qiang & Koh, Jimmy, 2024. "Dynamic tugboat deployment and scheduling with stochastic and time-varying service demands," Transportation Research Part B: Methodological, Elsevier, vol. 188(C).
    17. Alberto Ceselli & Ángel Felipe & M. Teresa Ortuño & Giovanni Righini & Gregorio Tirado, 2021. "A Branch-and-Cut-and-Price Algorithm for the Electric Vehicle Routing Problem with Multiple Technologies," SN Operations Research Forum, Springer, vol. 2(1), pages 1-33, March.
    18. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    19. Marlin W. Ulmer, 2020. "Horizontal combinations of online and offline approximate dynamic programming for stochastic dynamic vehicle routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 279-308, March.
    20. Christopher Dance & Alexei Gaivoronski, 2012. "Stochastic optimization for real time service capacity allocation under random service demand," Annals of Operations Research, Springer, vol. 193(1), pages 221-253, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:8:p:2596-2618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.