IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i11p4075-4094.html
   My bibliography  Save this article

Crowdsourced order‐fulfillment policies using in‐store customers

Author

Listed:
  • Iman Dayarian
  • Jennifer Pazour

Abstract

Omni‐channel services, such as buy‐online‐pick‐up‐from‐store, transfer the in‐store logistics once completed by shoppers to retailers. To cost‐effectively meet the high demands for such pickup services, we introduce a crowdsourced order‐fulfillment policy that deploys in‐store customers to pick items for online orders while completing their own personal shopping. As opposed to existing store fulfillment policies, this new concept utilizes in‐store customers to help, not constrain, dedicated pickers. Empirical data indicate that a high percentage of surveyed in‐store shoppers would be willing to occasionally participate in such a program. In‐store customers willing to participate were observed to be heterogeneous in their efforts, with variability in how much extra time they would be willing to provide and would prefer picking tasks that had only a small deviation from their personal shopping. Motivated by these empirical results, the decision problem of how to assign picking tasks for arriving online orders with a given service commitment, to a set of arriving in‐store customers or an abundant set of dedicated pickers, was formalized to capture the uncertainty and heterogeneity of using in‐store customers for in‐store picking tasks. We propose a tractable decision‐making methodology to determine whether an order will meet both service commitment feasibility and in‐store customer availability with a probability at least equal to a target threshold. This method captures dynamic order placements and in‐store customer arrivals and stochasticity in in‐store customers' shopping baskets. Extensive computational experiments for varying operational conditions of a grocery store dynamically matching actual online orders to arriving in‐store customers helps answer open questions from practitioners. Compensating in‐store customers based on their additional efforts reduced costs of fulfillment by greater than 30%, on average, compared to a baseline that uses only dedicated pickers for store fulfillment. Using the past five shopping baskets of participating in‐store customers to estimate assignment decisions can achieve both high online order service commitments and in‐store customer availability requirements. Our results suggest that in‐store customers should be assigned smaller orders than dedicated pickers.

Suggested Citation

  • Iman Dayarian & Jennifer Pazour, 2022. "Crowdsourced order‐fulfillment policies using in‐store customers," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4075-4094, November.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:11:p:4075-4094
    DOI: 10.1111/poms.13805
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13805
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Santiago Gallino & Antonio Moreno, 2014. "Integration of Online and Offline Channels in Retail: The Impact of Sharing Reliable Inventory Availability Information," Management Science, INFORMS, vol. 60(6), pages 1434-1451, June.
    2. Emrich, Oliver & Paul, Michael & Rudolph, Thomas, 2015. "Shopping Benefits of Multichannel Assortment Integration and the Moderating Role of Retailer Type," Journal of Retailing, Elsevier, vol. 91(2), pages 326-342.
    3. Cai, Ya-Jun & Lo, Chris K.Y., 2020. "Omni-channel management in the new retailing era: A systematic review and future research agenda," International Journal of Production Economics, Elsevier, vol. 229(C).
    4. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    5. Larsen, Nils Magne & Sigurdsson, Valdimar & Breivik, Jørgen & Orquin, Jacob Lund, 2020. "The heterogeneity of shoppers’ supermarket behaviors based on the use of carrying equipment," Journal of Business Research, Elsevier, vol. 108(C), pages 390-400.
    6. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    7. Zhang, Jun & Liu, Feng & Tang, Jiafu & Li, Yanhui, 2019. "The online integrated order picking and delivery considering Pickers’ learning effects for an O2O community supermarket," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 180-199.
    8. Tulay Flamand & Ahmed Ghoniem & Bacel Maddah, 2016. "Promoting impulse buying by allocating retail shelf space to grouped product categories," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(7), pages 953-969, July.
    9. Park, Jisoo & Dayarian, Iman & Montreuil, Benoit, 2021. "Showcasing optimization in omnichannel retailing," European Journal of Operational Research, Elsevier, vol. 294(3), pages 895-905.
    10. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    11. Zhang, Juzhi & Xu, Qingyun & He, Yi, 2018. "Omnichannel retail operations with consumer returns and order cancellation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 308-324.
    12. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    13. Fei Gao & Xuanming Su, 2017. "Omnichannel Retail Operations with Buy-Online-and-Pick-up-in-Store," Management Science, INFORMS, vol. 63(8), pages 2478-2492, August.
    14. Archetti, Claudia & Savelsbergh, Martin & Speranza, M. Grazia, 2016. "The Vehicle Routing Problem with Occasional Drivers," European Journal of Operational Research, Elsevier, vol. 254(2), pages 472-480.
    15. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    16. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    17. Sam K. Hui & Eric T. Bradlow & Peter S. Fader, 2009. "Testing Behavioral Hypotheses Using an Integrated Model of Grocery Store Shopping Path and Purchase Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 36(3), pages 478-493.
    18. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neves-Moreira, Fábio & Amorim, Pedro, 2024. "Learning efficient in-store picking strategies to reduce customer encounters in omnichannel retail," International Journal of Production Economics, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hübner, Alexander & Hense, Jonas & Dethlefs, Christian, 2022. "The revival of retail stores via omnichannel operations: A literature review and research framework," European Journal of Operational Research, Elsevier, vol. 302(3), pages 799-818.
    2. Shandong Mou, 2022. "Integrated Order Picking and Multi-Skilled Picker Scheduling in Omni-Channel Retail Stores," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    3. Lam, H.Y. & Ho, G.T.S. & Mo, Daniel Y. & Tang, Valerie, 2023. "Responsive pick face replenishment strategy for stock allocation to fulfil e-commerce order," International Journal of Production Economics, Elsevier, vol. 264(C).
    4. Anderson Rogério Faia Pinto & Marcelo Seido Nagano, 2020. "Genetic algorithms applied to integration and optimization of billing and picking processes," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 641-659, March.
    5. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    7. Jiu, Song, 2022. "Robust omnichannel retail operations with the implementation of ship-from-store," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    8. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    9. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    10. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    11. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
    13. van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
    14. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    15. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    16. Tutam, Mahmut & White, John A., 2019. "Multi-dock unit-load warehouse designs with a cross-aisle," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 247-262.
    17. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    18. Thierry Sauvage & Tony Cragg & Sarrah Chraibi & Oussama El Khalil Houssaini, 2018. "Running the Machine Faster: Acceleration, Humans and Warehousing," Post-Print hal-02905068, HAL.
    19. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    20. Jin, Delong & Caliskan-Demirag, Ozgun & Chen, Frank (Youhua) & Huang, Min, 2020. "Omnichannel retailers’ return policy strategies in the presence of competition," International Journal of Production Economics, Elsevier, vol. 225(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:11:p:4075-4094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.