IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v31y2021i4p1315-1331.html
   My bibliography  Save this article

Convergence of optimal expected utility for a sequence of binomial models

Author

Listed:
  • Friedrich Hubalek
  • Walter Schachermayer

Abstract

We consider the convergence of the solution of a discrete‐time utility maximization problem for a sequence of binomial models to the Black‐Scholes‐Merton model for general utility functions. In previous work by D. Kreps and the second named author a counter‐example for positively skewed non‐symmetric binomial models has been constructed, while the symmetric case was left as an open problem. In the present article we show that convergence holds for the symmetric case and for negatively skewed binomial models. The proof depends on some rather fine estimates of the tail behaviors of binomial random variables. We also review some general results on the convergence of discrete models to Black‐Scholes‐Merton as developed in a recent monograph by D. Kreps.

Suggested Citation

  • Friedrich Hubalek & Walter Schachermayer, 2021. "Convergence of optimal expected utility for a sequence of binomial models," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1315-1331, October.
  • Handle: RePEc:bla:mathfi:v:31:y:2021:i:4:p:1315-1331
    DOI: 10.1111/mafi.12326
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12326
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kreps,David M., 2019. "The Black–Scholes–Merton Model as an Idealization of Discrete-Time Economies," Cambridge Books, Cambridge University Press, number 9781108486361, October.
    2. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    4. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    5. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    6. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    7. David M. Kreps & Walter Schachermayer, 2020. "Convergence of optimal expected utility for a sequence of discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1205-1228, October.
    8. Friedrich Hubalek & Walter Schachermayer, 2020. "Convergence of Optimal Expected Utility for a Sequence of Binomial Models," Papers 2009.09751, arXiv.org.
    9. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    12. He, Hua, 1991. "Optimal consumption-portfolio policies: A convergence from discrete to continuous time models," Journal of Economic Theory, Elsevier, vol. 55(2), pages 340-363, December.
    13. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    14. Erhan Bayraktar & Yan Dolinsky & Jia Guo, 2018. "Continuity of Utility Maximization under Weak Convergence," Papers 1811.01420, arXiv.org, revised Jun 2020.
    15. Miklos Rasonyi & Lukasz Stettner, 2005. "On utility maximization in discrete-time financial market models," Papers math/0505243, arXiv.org.
    16. Yan Dolinsky & Ariel Neufeld, 2018. "Super†replication in fully incomplete markets," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 483-515, April.
    17. Olaf Krafft, 1969. "A note on exponential bounds for binomial probabilities," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 219-220, December.
    18. Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2020. "Extended weak convergence and utility maximisation with proportional transaction costs," Finance and Stochastics, Springer, vol. 24(4), pages 1013-1034, October.
    19. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    20. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David M. Kreps & Walter Schachermayer, 2020. "Convergence of optimal expected utility for a sequence of discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1205-1228, October.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. repec:dau:papers:123456789/5374 is not listed on IDEAS
    6. Timothy Johnson, 2015. "Reciprocity as a Foundation of Financial Economics," Journal of Business Ethics, Springer, vol. 131(1), pages 43-67, September.
    7. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    8. Alev Meral, 2019. "Comparison of various risk measures for an optimal portfolio," Papers 1912.09573, arXiv.org.
    9. Li, Minqiang, 2010. "Asset Pricing - A Brief Review," MPRA Paper 22379, University Library of Munich, Germany.
    10. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    11. repec:dau:papers:123456789/5590 is not listed on IDEAS
    12. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    13. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    14. repec:uts:finphd:40 is not listed on IDEAS
    15. W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
    16. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    17. Boyle, Phelim & Tian, Weidong, 2008. "The design of equity-indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 303-315, December.
    18. Keith A. Lewis, 2019. "A Simple Proof of the Fundamental Theorem of Asset Pricing," Papers 1912.01091, arXiv.org.
    19. Møller, T., 2002. "On Valuation and Risk Management at the Interface of Insurance and Finance," British Actuarial Journal, Cambridge University Press, vol. 8(4), pages 787-827, October.
    20. Eckhard Platen, 2005. "On The Role Of The Growth Optimal Portfolio In Finance," Australian Economic Papers, Wiley Blackwell, vol. 44(4), pages 365-388, December.
    21. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    22. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    23. Mark Mink & Frans J. de Weert, 2022. "Black-Scholes-Merton Option Pricing Revisited: Did we Find a Fatal Flaw?," Papers 2202.05671, arXiv.org, revised Oct 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:31:y:2021:i:4:p:1315-1331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.