IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v45y2024i2p214-247.html
   My bibliography  Save this article

Correcting the bias of the sample cross‐covariance estimator

Author

Listed:
  • Yifan Li

Abstract

We derive the finite sample bias of the sample cross‐covariance estimator based on a stationary vector‐valued time series with an unknown mean. This result leads to a bias‐corrected estimator of cross‐covariances constructed from linear combinations of sample cross‐covariances, which can in theory correct for the bias introduced by the first h lags of cross‐covariance with any h not larger than the sample size minus two. Based on the bias‐corrected cross‐covariance estimator, we propose a bias‐adjusted long run covariance (LRCOV) estimator. We derive the asymptotic relations between the bias‐corrected estimators and their conventional Counterparts in both the small‐b and the fixed‐b limit. Simulation results show that: (i) our bias‐corrected cross‐covariance estimators are very effective in eliminating the finite sample bias of their conventional counterparts, with potential mean squared error reduction when the data generating process is highly persistent; and (ii) the bias‐adjusted LRCOV estimators can have superior performance to their conventional counterparts with a smaller bias and mean squared error.

Suggested Citation

  • Yifan Li, 2024. "Correcting the bias of the sample cross‐covariance estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 214-247, March.
  • Handle: RePEc:bla:jtsera:v:45:y:2024:i:2:p:214-247
    DOI: 10.1111/jtsa.12701
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12701
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy J. Vogelsang & Jingjing Yang, 2016. "Exactly/Nearly Unbiased Estimation of Autocovariances of a Univariate Time Series With Unknown Mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 723-740, November.
    2. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
    3. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    4. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    5. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1350-1366, December.
    6. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Econometrica, Econometric Society, vol. 76(1), pages 175-194, January.
    7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    8. Li, Yifan, 2020. "Nearly unbiased estimation of sample skewness," Economics Letters, Elsevier, vol. 192(C).
    9. Alastair R. Hall, 2000. "Covariance Matrix Estimation and the Power of the Overidentifying Restrictions Test," Econometrica, Econometric Society, vol. 68(6), pages 1517-1528, November.
    10. Yang, Jingjing & Vogelsang, Timothy J., 2018. "Finite sample performance of a long run variance estimator based on exactly (almost) unbiased autocovariance estimators," Economics Letters, Elsevier, vol. 165(C), pages 21-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    2. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    3. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    4. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    5. Lee, Wei-Ming & Kuan, Chung-Ming & Hsu, Yu-Chin, 2014. "Testing over-identifying restrictions without consistent estimation of the asymptotic covariance matrix," Journal of Econometrics, Elsevier, vol. 181(2), pages 181-193.
    6. Pötscher, Benedikt M. & Preinerstorfer, David, 2018. "Controlling the size of autocorrelation robust tests," Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
    7. Yang, Jingjing & Vogelsang, Timothy J., 2018. "Finite sample performance of a long run variance estimator based on exactly (almost) unbiased autocovariance estimators," Economics Letters, Elsevier, vol. 165(C), pages 21-27.
    8. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(2), pages 261-358, April.
    9. Ray, Surajit & Savin, N.E. & Tiwari, Ashish, 2009. "Testing the CAPM revisited," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 721-733, December.
    10. Casini, Alessandro, 2024. "The fixed-b limiting distribution and the ERP of HAR tests under nonstationarity," Journal of Econometrics, Elsevier, vol. 238(2).
    11. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    12. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    13. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    14. Pötscher, Benedikt M. & Preinerstorfer, David, 2017. "Further Results on Size and Power of Heteroskedasticity and Autocorrelation Robust Tests, with an Application to Trend Testing," MPRA Paper 81053, University Library of Munich, Germany.
    15. Sun, Yixiao, 2014. "Let’s fix it: Fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and autocorrelation robust inference," Journal of Econometrics, Elsevier, vol. 178(P3), pages 659-677.
    16. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    17. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    18. Shin‐Kun Peng & Takatoshi Tabuchi, 2007. "Spatial Competition in Variety and Number of Stores," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 16(1), pages 227-250, March.
    19. Liu, Cheng & Sun, Yixiao, 2019. "A simple and trustworthy asymptotic t test in difference-in-differences regressions," Journal of Econometrics, Elsevier, vol. 210(2), pages 327-362.
    20. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:45:y:2024:i:2:p:214-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.