IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v38y2017i3p395-416.html
   My bibliography  Save this article

The Asymptotic Distribution of The Pathwise Mean Squared Displacement in Single Particle Tracking Experiments

Author

Listed:
  • Gustavo Didier
  • Kui Zhang

Abstract

No abstract is available for this item.

Suggested Citation

  • Gustavo Didier & Kui Zhang, 2017. "The Asymptotic Distribution of The Pathwise Mean Squared Displacement in Single Particle Tracking Experiments," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 395-416, May.
  • Handle: RePEc:bla:jtsera:v:38:y:2017:i:3:p:395-416
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12208
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustavo Didier & Scott A. McKinley & David B. Hill & John Fricks, 2012. "Statistical challenges in microrheology," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(5), pages 724-743, September.
    2. Martin Lysy & Natesh S. Pillai & David B. Hill & M. Gregory Forest & John W. R. Mellnik & Paula A. Vasquez & Scott A. McKinley, 2016. "Model Comparison and Assessment for Single Particle Tracking in Biological Fluids," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1413-1426, October.
    3. Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    2. Beran, Jan & Feng, Yuanhua, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Papers 99/08, University of Konstanz, Center of Finance and Econometrics (CoFE).
    3. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2022. "Globalization, long memory, and real interest rate convergence: a historical perspective," Empirical Economics, Springer, vol. 63(5), pages 2331-2355, November.
    4. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    5. Giraitis, Liudas & Phillips, Peter C.B., 2012. "Mean and autocovariance function estimation near the boundary of stationarity," Journal of Econometrics, Elsevier, vol. 169(2), pages 166-178.
    6. Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
    7. Kyaw, NyoNyo A. & Los, Cornelis A. & Zong, Sijing, 2006. "Persistence characteristics of Latin American financial markets," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 269-290, July.
    8. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    9. Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
    10. Laura Mayoral, 2007. "Minimum distance estimation of stationary and non-stationary ARFIMA processes," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 124-148, March.
    11. Muszkieta, Monika & Janczura, Joanna, 2023. "A compressed sensing approach to interpolation of fractional Brownian trajectories for a single particle tracking experiment," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    12. Wang Shin-Huei & Hafner Christian, 2011. "Estimating Autocorrelations in the Presence of Deterministic Trends," Journal of Time Series Econometrics, De Gruyter, vol. 3(2), pages 1-25, April.
    13. repec:wyi:journl:002213 is not listed on IDEAS
    14. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    15. D. S. Poskitt, 2005. "Autoregressive Approximation in Nonstandard Situations: The Non-Invertible and Fractionally Integrated Cases," Monash Econometrics and Business Statistics Working Papers 16/05, Monash University, Department of Econometrics and Business Statistics.
    16. La Spada Gabriele & Lillo Fabrizio, 2014. "The effect of round-off error on long memory processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 445-482, September.
    17. Ozdemir, Zeynel Abidin, 2009. "Linkages between international stock markets: A multivariate long-memory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2461-2468.
    18. Mohamed Boutahar, 2010. "Behaviour of skewness, kurtosis and normality tests in long memory data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(2), pages 193-215, June.
    19. Sibbertsen, Philipp & Kramer, Walter, 2006. "The power of the KPSS-test for cointegration when residuals are fractionally integrated," Economics Letters, Elsevier, vol. 91(3), pages 321-324, June.
    20. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    21. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:38:y:2017:i:3:p:395-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.