IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v36y2015i5p653-662.html
   My bibliography  Save this article

Double Bootstrap Confidence Intervals in the Two-Stage DEA Approach

Author

Listed:
  • Neil Kellard
  • Denise Osborn
  • Jerry Coakley
  • Dimitris K. Chronopoulos
  • Claudia Girardone
  • John C. Nankervis

Abstract

type="main" xml:id="jtsa12122-abs-0001"> Contextual factors usually assume an important role in determining firms' productive efficiencies. Nevertheless, identifying them in a regression framework might be complicated. The problem arises from the efficiencies being correlated with each other when estimated by Data Envelopment Analysis, rendering standard inference methods invalid. Simar and Wilson (2007) suggest the use of bootstrap algorithms that allow for valid statistical inference in this context. This article extends their work by proposing a double bootstrap algorithm for obtaining confidence intervals with improved coverage probabilities. Moreover, acknowledging the computational burden associated with iterated bootstrap procedures, we provide an algorithm based on deterministic stopping rules, which is less computationally demanding. Monte Carlo evidence shows considerable improvement in the coverage probabilities after iterating the bootstrap procedure. The results also suggest that percentile confidence intervals perform better than their basic counterpart.

Suggested Citation

  • Neil Kellard & Denise Osborn & Jerry Coakley & Dimitris K. Chronopoulos & Claudia Girardone & John C. Nankervis, 2015. "Double Bootstrap Confidence Intervals in the Two-Stage DEA Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 653-662, September.
  • Handle: RePEc:bla:jtsera:v:36:y:2015:i:5:p:653-662
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12122
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mei Xue & Patrick T. Harker, 1999. "Overcoming the Inherent Dependency of DEA Efficiency Scores: A Bootstrap Approach," Center for Financial Institutions Working Papers 99-17, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Berger, Allen N. & Humphrey, David B., 1997. "Efficiency of financial institutions: International survey and directions for future research," European Journal of Operational Research, Elsevier, vol. 98(2), pages 175-212, April.
    3. Kneip, Alois & Park, Byeong U. & Simar, Léopold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(6), pages 783-793, December.
    4. Staub, Roberta B. & da Silva e Souza, Geraldo & Tabak, Benjamin M., 2010. "Evolution of bank efficiency in Brazil: A DEA approach," European Journal of Operational Research, Elsevier, vol. 202(1), pages 204-213, April.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Wang, Mei-Hui & Huang, Tai-Hsin, 2007. "A study on the persistence of Farrell's efficiency measure under a dynamic framework," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1302-1316, August.
    7. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    8. Nankervis, John C., 2005. "Computational algorithms for double bootstrap confidence intervals," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 461-475, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yao-yao & Li, Jing-jing & Wang, Jin-li & Yang, Guo-liang & Chen, Zhenling, 2022. "Eco-efficiency of Chinese transportation industry: A DEA approach with non-discretionary input," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    2. Chen, Zhongfei & Matousek, Roman & Wanke, Peter, 2018. "Chinese bank efficiency during the global financial crisis: A combined approach using satisficing DEA and Support Vector Machines☆," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 71-86.
    3. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2019. "Estimating capacity utilization of Chinese manufacturing industries," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 94-110.
    4. Fukuyama, Hirofumi & Matousek, Roman, 2017. "Modelling bank performance: A network DEA approach," European Journal of Operational Research, Elsevier, vol. 259(2), pages 721-732.
    5. Abdul Latif Alhassan & Michael Lawer Tetteh, 2017. "Non-Interest Income and Bank Efficiency in Ghana: A Two-Stage DEA Bootstrapping Approach," Journal of African Business, Taylor & Francis Journals, vol. 18(1), pages 124-142, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Halkos & Roman Matousek & Nickolaos Tzeremes, 2016. "Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 47-77, January.
    2. Daley, Jenifer & Matthews, Kent & Zhang, Tiantian, 2011. "Post-crisis cost efficiency of Jamaican banks," Cardiff Economics Working Papers E2011/27, Cardiff University, Cardiff Business School, Economics Section.
    3. Wijesiri, Mahinda & Yaron, Jacob & Meoli, Michele, 2017. "Assessing the financial and outreach efficiency of microfinance institutions: Do age and size matter?," Journal of Multinational Financial Management, Elsevier, vol. 40(C), pages 63-76.
    4. Natalya Zelenyuk & Valentin Zelenyuk, 2015. "Productivity Drivers of Efficiency in Banking: Importance of Model Specifications," CEPA Working Papers Series WP082015, School of Economics, University of Queensland, Australia.
    5. San-Jose, Leire & Retolaza, Jose Luis & Torres Pruñonosa, Jose, 2014. "Efficiency in Spanish banking: A multistakeholder approach analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 32(C), pages 240-255.
    6. Simar, Léopold & Wilson, Paul W., 2020. "Technical, allocative and overall efficiency: Estimation and inference," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1164-1176.
    7. Natalya Zelenyuk & Valentin Zelenyuk, 2014. "Regional and Ownership Drivers of Bank Efficiency," CEPA Working Papers Series WP112014, School of Economics, University of Queensland, Australia.
    8. Alqahtani, Faisal & Mayes, David G. & Brown, Kym, 2017. "Islamic bank efficiency compared to conventional banks during the global crisis in the GCC region," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 58-74.
    9. Aggelopoulos, Eleftherios & Georgopoulos, Antonios, 2017. "Bank branch efficiency under environmental change: A bootstrap DEA on monthly profit and loss accounting statements of Greek retail branches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1170-1188.
    10. Barros, C.P. & Emrouznejad, Ali, 2016. "Assessing productive efficiency of banks using integrated Fuzzy-DEA and bootstrapping: A case of Mozambican banksAuthor-Name: Wanke, Peter," European Journal of Operational Research, Elsevier, vol. 249(1), pages 378-389.
    11. Sen Subir, 2020. "Analysis of Cost Efficiency of Indian Life Insurers: A comparison of Quantity vs Value based DEA Approach," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 14(1), pages 1-25, January.
    12. Wijesiri, Mahinda & Yaron, Jacob & Meoli, Michele, 2015. "Performance of microfinance institutions in achieving the poverty outreach and financial sustainability: When age and size matter?," MPRA Paper 69821, University Library of Munich, Germany.
    13. Helmi Hammami & Thanh Ngo & David Tripe & Dinh-Tri Vo, 2022. "Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector," Annals of Operations Research, Springer, vol. 311(2), pages 675-694, April.
    14. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    15. Meryem Duygun Fethi & Mohamed Shaban & Thomas Weyman-Jones, 2009. "Liberalisation, privatisation and the productivity of Egyptian banks: a non-parametric approach," The Service Industries Journal, Taylor & Francis Journals, vol. 31(7), pages 1143-1163, September.
    16. Miguel SARMIENTOO & Andrés CEPEDA & Hernando MUTIS & Juan F. PÉREZ, 2013. "Nueva Evidencia sobre la Eficiencia de la Banca," Archivos de Economía 10705, Departamento Nacional de Planeación.
    17. Ben Lockwood & Francesco Porcelli, 2013. "Incentive Schemes for Local Government: Theory and Evidence from Comprehensive Performance Assessment in England," American Economic Journal: Economic Policy, American Economic Association, vol. 5(3), pages 254-286, August.
    18. Roland Banya & Nicholas Biekpe, 2018. "Banking efficiency and its determinants in selected frontier african markets," Economic Change and Restructuring, Springer, vol. 51(1), pages 69-95, February.
    19. Mario Fortin & André Leclerc, 2011. "L’Efficience Des Cooperatives De Services Financiers: Une Analyse De La Contribution Du Milieu," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 82(1), pages 45-62, March.
    20. Tommaso Agasisti & Aleksei Egorov & Pavel Serebrennikov, 2020. "How Do The Characteristics Of The Environment Influence University Efficiency? Evidence From A Conditional Efficiency Approach," HSE Working papers WP BRP 238/EC/2020, National Research University Higher School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:36:y:2015:i:5:p:653-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.