Forecasting linear dynamical systems using subspace methods
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
Other versions of this item:
- Alfredo García-Hiernaux, 2009. "Forecasting linear dynamical systems using subspace methods," Documentos de Trabajo del ICAE 2009-02, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
References listed on IDEAS
- Kascha, Christian & Mertens, Karel, 2009.
"Business cycle analysis and VARMA models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
- Christian Kascha & Karel Mertens, 2006. "Business Cycle Analysis and VARMA models," Economics Working Papers ECO2006/37, European University Institute.
- Christian Kascha & Karel Mertens, 2008. "Business cycle analysis and VARMA models," Working Paper 2008/05, Norges Bank.
- Christian Schumacher, 2007.
"Forecasting German GDP using alternative factor models based on large datasets,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
- Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Bauer, Dietmar, 2005. "Estimating Linear Dynamical Systems Using Subspace Methods," Econometric Theory, Cambridge University Press, vol. 21(1), pages 181-211, February.
- Dietmar Bauer, 2005. "Comparing the CCA Subspace Method to Pseudo Maximum Likelihood Methods in the case of No Exogenous Inputs," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 631-668, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christian Kascha, 2012.
"A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 297-324.
- Christian Kascha, 2007. "A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models," Economics Working Papers ECO2007/12, European University Institute.
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018.
"Dynamic factor model with infinite‐dimensional factor space: Forecasting,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
- Forni, Mario & Giovannelli, Alessandro & Lippi, Marco & Soccorsi, Stefano, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," CEPR Discussion Papers 11161, C.E.P.R. Discussion Papers.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor Model with Infinite Dimensional Factor Space: Forecasting," Working Papers ECARES ECARES 2016-16, ULB -- Universite Libre de Bruxelles.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," Center for Economic Research (RECent) 120, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Karen Poghosyan & Ruben Poghosyan, 2021.
"On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia,"
Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
- Poghosyan, Karen & Poghosyan, Ruben, 2021. "On the applicability of dynamic factor models for forecasting real GDP growth in Armenia," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 61, pages 28-46.
- António Rua & Francisco Craveiro Dias & Maximiano Pinheiro, 2014. "Forecasting Portuguese GDP with factor models," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Kevin Moran & Simplice Aimé Nono & Imad Rherrad, 2018. "Forecasting with Many Predictors: How Useful are National and International Confidence Data?," Cahiers de recherche 1814, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012.
"Nowcasting German GDP: A comparison of bridge and factor models,"
Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
- Antipa, P. & Barhoumi, K. & Brunhes-Lesage, V. & Darné, O., 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Working papers 401, Banque de France.
- Stavros Degiannakis, 2023.
"The D-model for GDP nowcasting,"
Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
- Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Working Papers 317, Bank of Greece.
- Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
- Rua, António, 2017.
"A wavelet-based multivariate multiscale approach for forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
- António Rua, 2016. "A wavelet-based multivariate multiscale approach for forecasting," Working Papers w201612, Banco de Portugal, Economics and Research Department.
- Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
- Hwee Kwan Chow & Keen Meng Choy, 2009.
"Analyzing and forecasting business cycles in a small open economy: A dynamic factor model for Singapore,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2009(1), pages 19-41.
- Hwee Kwan Chow & Keen Meng Choy, 2009. "Analyzing and Forecasting Business Cycles in a Small Open Economy: A Dynamic Factor Model for Singapore," Working Papers 05-2009, Singapore Management University, School of Economics.
- Hwee Kwan Chow & Keen Meng Choy, 2009. "Analyzing and Forecasting Business Cycles in a Small Open Economy : A Dynamic Factor Model for Singapore," Macroeconomics Working Papers 22074, East Asian Bureau of Economic Research.
- Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008.
"A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder,"
Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
- Konstantin A. Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2007. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Discussion Papers of DIW Berlin 664, DIW Berlin, German Institute for Economic Research.
- Lehmann Robert & Wohlrabe Klaus, 2015.
"Forecasting GDP at the Regional Level with Many Predictors,"
German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
- Robert Lehmann & Klaus Wohlrabe, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, Verein für Socialpolitik, vol. 16(2), pages 226-254, May.
- Robert Lehmann & Klaus Wohlrabe, 2012. "Forecasting GDP at the Regional Level with Many Predictors," CESifo Working Paper Series 3956, CESifo.
- Robert Lehmann & Klaus Wohlrabe, 2013. "Forecasting GDP at the regional level with many predictors," ERSA conference papers ersa13p15, European Regional Science Association.
- Lehmann, Robert & Wohlrabe, Klaus, 2013. "Forecasting GDP at the regional level with many predictors," Discussion Papers in Economics 17104, University of Munich, Department of Economics.
- Kyle E. Binder & Mohsen Pourahmadi & James W. Mjelde, 2020. "The role of temporal dependence in factor selection and forecasting oil prices," Empirical Economics, Springer, vol. 58(3), pages 1185-1223, March.
- Esteves, Paulo Soares, 2013.
"Direct vs bottom–up approach when forecasting GDP: Reconciling literature results with institutional practice,"
Economic Modelling, Elsevier, vol. 33(C), pages 416-420.
- Paulo Esteves, 2011. "Direct vs bottom-up approach when forecasting GDP: reconciling literature results with institutional practice," Working Papers w201129, Banco de Portugal, Economics and Research Department.
- Dias, Gustavo Fruet & Kapetanios, George, 2018.
"Estimation and forecasting in vector autoregressive moving average models for rich datasets,"
Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
- Gustavo Fruet Dias & George Kapetanios, 2014. "Estimation and Forecasting in Vector Autoregressive Moving Average Models for Rich Datasets," CREATES Research Papers 2014-37, Department of Economics and Business Economics, Aarhus University.
- Francisco Dias & Maximiano Pinheiro & António Rua, 2018. "A bottom-up approach for forecasting GDP in a data-rich environment," Applied Economics Letters, Taylor & Francis Journals, vol. 25(10), pages 718-723, June.
- Kholodilin Konstantin Arkadievich & Siliverstovs Boriss, 2006.
"On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence,"
Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 226(3), pages 234-259, June.
- Konstantin A. Kholodilin & Boriss Siliverstovs, 2005. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Discussion Papers of DIW Berlin 522, DIW Berlin, German Institute for Economic Research.
More about this item
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:32:y:2011:i:5:p:462-468. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.