IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v30y2009i6p652-673.html
   My bibliography  Save this article

On nonparametric prediction of linear processes

Author

Listed:
  • Jan Mielniczuk
  • Zhou Zhou
  • Wei Biao Wu

Abstract

. We consider nonparametric prediction problem for both short‐ and long‐range‐dependent linear processes. Asymptotic properties of local linear estimates are obtained and, for long‐range‐dependent processes, an interesting dichotomous phenomenon is described: the limiting distribution depends on the interplay between the strength of the dependence and the magnitude of the bandwidth. A simulation study is carried out to assess the performance of the nonparametric prediction estimator.

Suggested Citation

  • Jan Mielniczuk & Zhou Zhou & Wei Biao Wu, 2009. "On nonparametric prediction of linear processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 652-673, November.
  • Handle: RePEc:bla:jtsera:v:30:y:2009:i:6:p:652-673
    DOI: 10.1111/j.1467-9892.2009.00632.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2009.00632.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2009.00632.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Biao Wu & Zhibiao Zhao, 2007. "Inference of trends in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 391-410, June.
    2. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhibiao & Wu, Wei Biao, 2009. "Nonparametric inference of discretely sampled stable Lévy processes," Journal of Econometrics, Elsevier, vol. 153(1), pages 83-92, November.
    2. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    3. Battisti, Michele & Gatto, Massimo Del & Parmeter, Christopher F., 2022. "Skill-biased technical change and labor market inefficiency," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    4. Richard H. Clarida & Mark P. Taylor, 2003. "Nonlinear Permanent - Temporary Decompositions in Macroeconomics and Finance," Economic Journal, Royal Economic Society, vol. 113(486), pages 125-139, March.
    5. Bonsoo Koo & Oliver Linton, 2010. "Semiparametric Estimation of Locally Stationary Diffusion Models," STICERD - Econometrics Paper Series 551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Zhijie Xiao & Oliver Linton & Raymond J. Carroll & E. Mammen, 2002. "More Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors," Cowles Foundation Discussion Papers 1375, Cowles Foundation for Research in Economics, Yale University.
    7. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    8. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    9. Yujiao Yang & Qiongxia Song, 2014. "Jump detection in time series nonparametric regression models: a polynomial spline approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 325-344, April.
    10. Karlsen, Hans Arnfinn & Tjostheim, Dag, 1998. "Nonparametric estimation in null recurrent times series," SFB 373 Discussion Papers 1998,50, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Whang, Yoon-Jae & Linton, Oliver, 1999. "The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic time series," Journal of Econometrics, Elsevier, vol. 91(1), pages 1-42, July.
    12. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    13. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    14. Martin Evans and Richard K. Lyons, 2002. "Are Different-Currency Assets Imperfect Substitutes?," Working Papers gueconwpa~02-02-12, Georgetown University, Department of Economics.
    15. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    16. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
    17. Chen, Jia & Li, Degui & Linton, Oliver & Lu, Zudi, 2016. "Semiparametric dynamic portfolio choice with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 194(2), pages 309-318.
    18. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    19. Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
    20. Ying Wang & Peter C. B. Phillips & Yundong Tu, 2024. "Limit Theory and Inference in Non-cointegrated Functional Coefficient Regression," Cowles Foundation Discussion Papers 2399, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:30:y:2009:i:6:p:652-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.