IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v20y1999i4p401-416.html
   My bibliography  Save this article

Bayesian Inference on Periodicities and Component Spectral Structure in Time Series

Author

Listed:
  • Gabriel Huerta
  • Mike West

Abstract

We detail and illustrate time series analysis and spectral inference in autoregressive models with a focus on the underlying latent structure and time series decompositions. A novel class of priors on parameters of latent components leads to a new class of smoothness priors on autoregressive coefficients, provides for formal inference on model order, including very high order models, and leads to the incorporation of uncertainty about model order into summary inferences. The class of prior models also allows for subsets of unit roots, and hence leads to inference on sustained though stochastically time‐varying periodicities in time series. Applications to analysis of the frequency composition of time series, in both time and spectral domains, is illustrated in a study of a time series from astronomy. This analysis demonstrates the impact and utility of the new class of priors in addressing model order uncertainty and in allowing for unit root structure. Time‐domain decomposition of a time series into estimated latent components provides an important alternative view of the component spectral characteristics of a series. In addition, our data analysis illustrates the utility of the smoothness prior and allowance for unit root structure in inference about spectral densities. In particular, the framework overcomes supposed problems in spectral estimation with autoregressive models using more traditional model‐fitting methods.

Suggested Citation

  • Gabriel Huerta & Mike West, 1999. "Bayesian Inference on Periodicities and Component Spectral Structure in Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(4), pages 401-416, July.
  • Handle: RePEc:bla:jtsera:v:20:y:1999:i:4:p:401-416
    DOI: 10.1111/1467-9892.00145
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00145
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricio Maturana-Russel & Renate Meyer, 2021. "Bayesian spectral density estimation using P-splines with quantile-based knot placement," Computational Statistics, Springer, vol. 36(3), pages 2055-2077, September.
    2. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    3. Macaro, Christian, 2010. "Bayesian non-parametric signal extraction for Gaussian time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 381-395, August.
    4. Harvey, Andrew C. & Trimbur, Thomas M. & Van Dijk, Herman K., 2007. "Trends and cycles in economic time series: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 618-649, October.
    5. J. Vermaak & C. Andrieu & A. Doucet & S. J. Godsill, 2004. "Reversible Jump Markov Chain Monte Carlo Strategies for Bayesian Model Selection in Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 785-809, November.
    6. Vosseler, Alexander, 2016. "Bayesian model selection for unit root testing with multiple structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 616-630.
    7. E. J. G Odolphin & S. E. Johnson, 2003. "Decomposition of Time Series Dynamic Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(5), pages 513-527, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:20:y:1999:i:4:p:401-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.