IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i2p271-287.html
   My bibliography  Save this article

A Bayesian spatio‐network model for multiple adolescent adverse health behaviours

Author

Listed:
  • George Gerogiannis
  • Mark Tranmer
  • Duncan Lee
  • Thomas Valente

Abstract

The use of alcohol, cigarettes and marijuana among adolescents are major public health concerns, and a number of epidemiological studies have been conducted to understand the drivers of these individual health behaviours. However, there is no literature that jointly models these health behaviours with the aim of understanding the relative importance of individual factors, friendship effects and spatial effects in determining the prevalence of alcohol, cigarette and marijuana use among adolescents. To address this gap in the literature, we propose a novel multivariate spatio‐network model for jointly modelling all three of these behaviours, with inference conducted in a Bayesian setting using Markov chain Monte Carlo simulation. The model is motivated by survey data from five schools in Los Angeles, California, and the results indicate the important roles that individual factors and friendship networks play in driving the uptake of these health behaviours.

Suggested Citation

  • George Gerogiannis & Mark Tranmer & Duncan Lee & Thomas Valente, 2022. "A Bayesian spatio‐network model for multiple adolescent adverse health behaviours," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 271-287, March.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:2:p:271-287
    DOI: 10.1111/rssc.12531
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12531
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fujimoto, Kayo & Valente, Thomas W., 2015. "Multiplex congruity: Friendship networks and perceived popularity as correlates of adolescent alcohol use," Social Science & Medicine, Elsevier, vol. 125(C), pages 173-181.
    2. Escobedo, L.G. & Peddicord, J.P., 1996. "Smoking prevalence in US birth cohorts: The influence of gender and education," American Journal of Public Health, American Public Health Association, vol. 86(2), pages 231-236.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Eilidh Jack & Duncan Lee & Nema Dean, 2019. "Estimating the changing nature of Scotland's health inequalities by using a multivariate spatiotemporal model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(3), pages 1061-1080, June.
    5. Mark Tranmer & David Steel & William J. Browne, 2014. "Multiple-membership multiple-classification models for social network and group dependences," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(2), pages 439-455, February.
    6. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    7. Hu, M.-C. & Davies, M. & Kandel, D.B., 2006. "Epidemiology and correlates of daily smoking and nicotine dependence among young adults in the United States," American Journal of Public Health, American Public Health Association, vol. 96(2), pages 299-308.
    8. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas C. McHale & Claudia M. Romero-Vivas & Claudio Fronterre & Pedro Arango-Padilla & Naomi R. Waterlow & Chad D. Nix & Andrew K. Falconar & Jorge Cano, 2019. "Spatiotemporal Heterogeneity in the Distribution of Chikungunya and Zika Virus Case Incidences during their 2014 to 2016 Epidemics in Barranquilla, Colombia," IJERPH, MDPI, vol. 16(10), pages 1-21, May.
    2. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    3. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    4. Carter Allen & Yuzhou Chang & Brian Neelon & Won Chang & Hang J. Kim & Zihai Li & Qin Ma & Dongjun Chung, 2023. "A Bayesian multivariate mixture model for high throughput spatial transcriptomics," Biometrics, The International Biometric Society, vol. 79(3), pages 1775-1787, September.
    5. Ranjita Pandey & Himanshu Tolani, 2022. "Crime patterns in Delhi: a Bayesian spatio-temporal assessment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2971-2980, December.
    6. Strong P Marbaniang & Holendro Singh Chungkham & Hemkhothang Lhungdim, 2022. "A structured additive modeling of diabetes and hypertension in Northeast India," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
    7. Rodrigues, E.C. & Assunção, R., 2012. "Bayesian spatial models with a mixture neighborhood structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 88-102.
    8. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    9. Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
    10. Thierno Souleymane Barry & Oscar Ngesa & Nelson Owuor Onyango & Henry Mwambi, 2021. "Bayesian Spatial Modeling of Anemia among Children under 5 Years in Guinea," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    11. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    12. Congdon, P., 2007. "Bayesian modelling strategies for spatially varying regression coefficients: A multivariate perspective for multiple outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2586-2601, February.
    13. Congdon, Peter, 2007. "Mixtures of spatial and unstructured effects for spatially discontinuous health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3197-3212, March.
    14. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    15. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    16. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    17. Peter Congdon, 2013. "Spatially Interpolated Disease Prevalence Estimation Using Collateral Indicators of Morbidity and Ecological Risk," IJERPH, MDPI, vol. 10(10), pages 1-15, October.
    18. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    19. William Browne & Harvey Goldstein, 2010. "MCMC Sampling for a Multilevel Model With Nonindependent Residuals Within and Between Cluster Units," Journal of Educational and Behavioral Statistics, , vol. 35(4), pages 453-473, August.
    20. I. Gede Nyoman M. Jaya & Henk Folmer, 2021. "Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 849-881, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:2:p:271-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.