IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i4p1027-1048.html
   My bibliography  Save this article

Assessing the reproducibility of microbiome measurements based on concordance correlation coefficients

Author

Listed:
  • Ying Cui
  • Limin Peng
  • Yijuan Hu
  • HuiChuan J. Lai

Abstract

Evaluating the reproducibility or agreement of microbiome measurements is often a crucial step to ensure rigorous downstream analyses in microbiome studies. In this paper, we address this need by developing adaptations of Lin’s concordance correlation coefficient (CCC) tailored to microbiome studies. We introduce a general formulation of the new CCC measures upon the use of a distance function appropriately characterizing the discrepancy between microbiome compositional measurements. We thoroughly study the special cases that adopt the Euclidean distance and Aitchison distance. Our proposals appropriately account for the unique features of microbiome compositional data, including high‐dimensionality, dependency among individual relative abundances and the presence of many zeros. We further investigate a practical compound approach to help better understand the sources of data inconsistency. Extensive simulation studies are conducted to evaluate the utility of the proposed methods in realistic scenarios. We also apply the proposed methods to a microbiome validation data set from the Feeding Infants Right.. from the STart (FIRST) study. Our analyses offer useful insight about the extent of data variations resulted from two different experiment procedures as well as their heterogeneous patterns across genera.

Suggested Citation

  • Ying Cui & Limin Peng & Yijuan Hu & HuiChuan J. Lai, 2021. "Assessing the reproducibility of microbiome measurements based on concordance correlation coefficients," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1027-1048, August.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:4:p:1027-1048
    DOI: 10.1111/rssc.12497
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12497
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charrad, Malika & Ghazzali, Nadia & Boiteau, Véronique & Niknafs, Azam, 2014. "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i06).
    2. Li, Runze & Chow, Mosuk, 2005. "Evaluation of reproducibility for paired functional data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 81-101, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi & Cheng, Chuntian & Cai, Huaxiang & Jin, Xiaoyu & Jia, Zebin & Wu, Xinyu & Su, Huaying & Yang, Tiantian, 2022. "Long-term stochastic model predictive control and efficiency assessment for hydro-wind-solar renewable energy supply system," Applied Energy, Elsevier, vol. 316(C).
    2. Bolívar, Fernando & Duran, Miguel A. & Lozano-Vivas, Ana, 2023. "Bank business models, size, and profitability," Finance Research Letters, Elsevier, vol. 53(C).
    3. Anis Hoayek & Didier Rullière, 2024. "Assessing clustering methods using Shannon's entropy," Post-Print hal-03812055, HAL.
    4. Reder, Maik & Yürüşen, Nurseda Y. & Melero, Julio J., 2018. "Data-driven learning framework for associating weather conditions and wind turbine failures," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 554-569.
    5. Alexandra-Nicoleta Ciucu (Durnoi) & Camelia Delcea & Kosyo Stoychev, 2024. "A County-Level Analysis of the Economic Performance in Romania and Bulgaria Using Hierarchical Algorithms," Stats, MDPI, vol. 7(4), pages 1-29, October.
    6. Marcin Gąsior, 2021. "Environmental Attitudes and Willingness to Purchase Online—Classification Approach," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    7. Mahdi Kalantari & Hossein Hassani, 2019. "Automatic Grouping in Singular Spectrum Analysis," Forecasting, MDPI, vol. 1(1), pages 1-16, October.
    8. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    9. Alena Andrejovská & Monika Hudáková, 2016. "Classification of EU Countries in the Context of Corporate Income Tax," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 64(5), pages 1699-1708.
    10. Kluge, Ulrike & Ringbeck, Jürgen & Spinler, Stefan, 2020. "Door-to-door travel in 2035 – A Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    11. Chrysovalantis Gaganis & Panagiota Papadimitri & Fotios Pasiouras & Menelaos Tasiou, 2023. "Social traits and credit card default: a two-stage prediction framework," Annals of Operations Research, Springer, vol. 325(2), pages 1231-1253, June.
    12. Montorsi, Carlotta & Fusco, Alessio & Van Kerm, Philippe & Bordas, Stéphane P.A., 2024. "Predicting depression in old age: Combining life course data with machine learning," Economics & Human Biology, Elsevier, vol. 52(C).
    13. Saemi Shin & Won Suck Yoon & Sang-Hoon Byeon, 2022. "Trends in Occupational Infectious Diseases in South Korea and Classification of Industries According to the Risk of Biological Hazards Using K-Means Clustering," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    14. Igor Kravchuk & Viktoriia Stoika, 2021. "Business Μodels of Βanks for the Financial Markets in the EU," European Research Studies Journal, European Research Studies Journal, vol. 0(2 - Part ), pages 371-382.
    15. Micheli D. P. Costa & Kerrie A. Wilson & Philip J. Dyer & Roland Pitcher & José H. Muelbert & Anthony J. Richardson, 2021. "Potential future climate-induced shifts in marine fish larvae and harvested fish communities in the subtropical southwestern Atlantic Ocean," Climatic Change, Springer, vol. 165(3), pages 1-21, April.
    16. Shruthi Patil & Leander Kotzur & Detlef Stolten, 2022. "Advanced Spatial and Technological Aggregation Scheme for Energy System Models," Energies, MDPI, vol. 15(24), pages 1-26, December.
    17. Krzysztof Dmytrów & Beata Bieszk-Stolorz & Joanna Landmesser-Rusek, 2022. "Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method," Energies, MDPI, vol. 15(20), pages 1-17, October.
    18. Jacob C Kimmel & Amy Y Chang & Andrew S Brack & Wallace F Marshall, 2018. "Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-29, January.
    19. Maki Ikegami & Bart Neuts, 2020. "Strategic Options for Campus Sustainability: Cluster Analysis on Higher Education Institutions in Japan," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    20. Song He & Xinyu Song & Xiaoxi Yang & Jijun Yu & Yuqi Wen & Lianlian Wu & Bowei Yan & Jiannan Feng & Xiaochen Bo, 2021. "COMSUC: A web server for the identification of consensus molecular subtypes of cancer based on multiple methods and multi-omics data," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-10, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:4:p:1027-1048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.