IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v64y2015i1p49-73.html
   My bibliography  Save this article

Inferences on relative failure rates in stratified mark-specific proportional hazards models with missing marks, with application to human immunodeficiency virus vaccine efficacy trials

Author

Listed:
  • Peter B. Gilbert
  • Yanqing Sun

Abstract

type="main" xml:id="rssc12067-abs-0001"> The paper develops hypothesis testing procedures for the stratified mark-specific proportional hazards model in the presence of missing marks. The motivating application is preventive human immunodeficiency virus (HIV) vaccine efficacy trials, where the mark is the genetic distance of an infecting HIV sequence to an HIV sequence represented inside the vaccine. The test statistics are constructed on the basis of two-stage efficient estimators, which utilize auxiliary predictors of the missing marks. The asymptotic properties and finite sample performances of the testing procedures are investigated, demonstrating double robustness and effectiveness of the predictive auxiliaries to recover efficiency. The methods are applied to the RV144 vaccine trial.

Suggested Citation

  • Peter B. Gilbert & Yanqing Sun, 2015. "Inferences on relative failure rates in stratified mark-specific proportional hazards models with missing marks, with application to human immunodeficiency virus vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(1), pages 49-73, January.
  • Handle: RePEc:bla:jorssc:v:64:y:2015:i:1:p:49-73
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.2014.64.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Heng & Yanqing Sun & Seunggeun Hyun & Peter B. Gilbert, 2020. "Analysis of the time-varying Cox model for the cause-specific hazard functions with missing causes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 731-760, October.
    2. Guangren Yang & Yanqing Sun & Li Qi & Peter B. Gilbert, 2017. "Estimation of Stratified Mark-Specific Proportional Hazards Models Under Two-Phase Sampling with Application to HIV Vaccine Efficacy Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 259-283, June.
    3. Yanqing Sun & Li Qi & Fei Heng & Peter B. Gilbert, 2020. "A hybrid approach for the stratified markā€specific proportional hazards model with missing covariates and missing marks, with application to vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 791-814, August.
    4. Craig A Magaret & David C Benkeser & Brian D Williamson & Bhavesh R Borate & Lindsay N Carpp & Ivelin S Georgiev & Ian Setliff & Adam S Dingens & Noah Simon & Marco Carone & Christopher Simpkins & Dav, 2019. "Prediction of VRC01 neutralization sensitivity by HIV-1 gp160 sequence features," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-35, April.
    5. Dongxiao Han & Liuquan Sun & Yanqing Sun & Li Qi, 2017. "Mark-specific additive hazards regression with continuous marks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 467-494, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:64:y:2015:i:1:p:49-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.