A hot deck imputation procedure for multiply imputing nonignorable missing data: The proxy pattern-mixture hot deck
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2014.09.008
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
- Siddique, Juned & Belin, Thomas R., 2008. "Using an Approximate Bayesian Bootstrap to multiply impute nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 405-415, December.
- Jae Kwang Kim & J. Michael Brick & Wayne A. Fuller & Graham Kalton, 2006. "On the bias of the multiple‐imputation variance estimator in survey sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 509-521, June.
- Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
- Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nancy, Jane Y. & Khanna, Nehemiah H. & Arputharaj, Kannan, 2017. "Imputing missing values in unevenly spaced clinical time series data to build an effective temporal classification framework," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 63-79.
- Andridge Rebecca R. & Little Roderick J.A., 2020. "Proxy Pattern-Mixture Analysis for a Binary Variable Subject to Nonresponse," Journal of Official Statistics, Sciendo, vol. 36(3), pages 703-728, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yanqing Sun & Li Qi & Fei Heng & Peter B. Gilbert, 2020. "A hybrid approach for the stratified mark‐specific proportional hazards model with missing covariates and missing marks, with application to vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 791-814, August.
- Ralf Münnich & Siegfried Gabler & Christian Bruch & Jan Pablo Burgard & Tobias Enderle & Jan-Philipp Kolb & Thomas Zimmermann, 2015. "Tabellenauswertungen im Zensus unter Berücksichtigung fehlender Werte," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(3), pages 269-304, December.
- Jana Emmenegger & Ralf Münnich & Jannik Schaller, 2022. "Evaluating Data Fusion Methods to Improve Income Modelling," Research Papers in Economics 2022-03, University of Trier, Department of Economics.
- Kristian Kleinke, 2017. "Multiple Imputation Under Violated Distributional Assumptions: A Systematic Evaluation of the Assumed Robustness of Predictive Mean Matching," Journal of Educational and Behavioral Statistics, , vol. 42(4), pages 371-404, August.
- Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
- Chenyang Gu & Roee Gutman, 2017. "Combining item response theory with multiple imputation to equate health assessment questionnaires," Biometrics, The International Biometric Society, vol. 73(3), pages 990-998, September.
- Chia-Ning Wang & Roderick Little & Bin Nan & Siobán D. Harlow, 2011. "A Hot-Deck Multiple Imputation Procedure for Gaps in Longitudinal Recurrent Event Histories," Biometrics, The International Biometric Society, vol. 67(4), pages 1573-1582, December.
- Adel Bosch & Steven F. Koch, 2021. "Individual and Household Debt: Does Imputation Choice Matter?," Working Papers 202141, University of Pretoria, Department of Economics.
- Anika Rasner & Joachim R. Frick & Markus M. Grabka, 2013. "Statistical Matching of Administrative and Survey Data," Sociological Methods & Research, , vol. 42(2), pages 192-224, May.
- Shu Yang & Jae Kwang Kim, 2020. "Asymptotic theory and inference of predictive mean matching imputation using a superpopulation model framework," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 839-861, September.
- Raymundo M. Campos-Vázquez, 2013.
"Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México,"
Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 23-54, November.
- Raymundo M. Campos-Vazquez, 2013. "Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México," Serie documentos de trabajo del Centro de Estudios Económicos 2013-04, El Colegio de México, Centro de Estudios Económicos.
- Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
- Verbeek, M.J.C.M. & Nijman, T.E., 1992.
"Incomplete panels and selection bias : A survey,"
Discussion Paper
1992-7, Tilburg University, Center for Economic Research.
- Verbeek, M. & Nijman, T., 1992. "Incomplete Panels and Selection Bias: A Survey," Papers 9207, Tilburg - Center for Economic Research.
- Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
- Martin, Eisele & Zhu, Junyi, 2013.
"Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions,"
MPRA Paper
57666, University Library of Munich, Germany.
- Eisele, Martin & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," EconStor Preprints 100007, ZBW - Leibniz Information Centre for Economics.
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Dang, Hai-Anh H & Carletto, Calogero, 2022.
"Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation,"
IZA Discussion Papers
14997, Institute of Labor Economics (IZA).
- Dang, Hai-Anh H. & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," GLO Discussion Paper Series 1020, Global Labor Organization (GLO).
- Daniel Schunk, 2007.
"A Markov Chain Monte Carlo Multiple Imputation Procedure for Dealing with Item Nonresponse in the German SAVE Survey,"
MEA discussion paper series
07121, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
- Schunk, Daniel, 2007. "A Markov Chain Monte Carlo multiple imputation procedure for dealing with item nonresponse in the German SAVE survey," Papers 07-06, Sonderforschungsbreich 504.
- Schunk, Daniel, 2007. "A Markov Chain Monte Carlo Multiple Imputation Procedure for Dealing with Item Nonresponse in the German SAVE Survey," Sonderforschungsbereich 504 Publications 07-06, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
- Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
- Zachary H. Seeskin, 2016. "Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes," CARRA Working Papers 2016-06, Center for Economic Studies, U.S. Census Bureau.
More about this item
Keywords
Hot deck; Nonignorable missingness; Donor selection; Sensitivity analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:82:y:2015:i:c:p:173-185. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.