IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v58y2009i4p525-542.html
   My bibliography  Save this article

Spatial prediction of weed intensities from exact count data and image‐based estimates

Author

Listed:
  • Gilles Guillot
  • Niklas Lorén
  • Mats Rudemo

Abstract

Summary. Collecting weed exact counts in an agricultural field is easy but extremely time consuming. Image analysis algorithms for object extraction applied to pictures of agricultural fields may be used to estimate the weed content with a high resolution (about 1 m2), and pictures that are acquired at a large number of sites can be used to obtain maps of weed content over a whole field at a reasonably low cost. However, these image‐based estimates are not perfect and acquiring exact weed counts also is highly useful both for assessing the accuracy of the image‐based algorithms and for improving the estimates by use of the combined data. We propose and compare various models for image index and exact weed count and we use them to assess how such data should be combined to obtain reliable maps. The method is applied to a real data set from a 30‐ha field. We show that using image estimates in addition to exact counts allows us to improve the accuracy of maps significantly. We also show that the relative performances of the methods depend on the size of the data set and on the specific methodology (full Bayes versus plug‐in) that is implemented.

Suggested Citation

  • Gilles Guillot & Niklas Lorén & Mats Rudemo, 2009. "Spatial prediction of weed intensities from exact count data and image‐based estimates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 525-542, September.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:4:p:525-542
    DOI: 10.1111/j.1467-9876.2009.00664.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2009.00664.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2009.00664.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. Allcroft & Chris A. Glasbey, 2003. "A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 487-498, October.
    2. Rasmus Waagepetersen, 2006. "A Simulation‐based Goodness‐of‐fit Test for Random Effects in Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 721-731, December.
    3. Ole F. Christensen & Rasmus Waagepetersen, 2002. "Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(2), pages 280-286, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bourgeois, A. & Gaba, S. & Munier-Jolain, N. & Borgy, B. & Monestiez, P. & Soubeyrand, S., 2012. "Inferring weed spatial distribution from multi-type data," Ecological Modelling, Elsevier, vol. 226(C), pages 92-98.
    2. De Oliveira, Victor, 2013. "Hierarchical Poisson models for spatial count data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 393-408.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    2. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    3. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    4. Shun Yu & Xianzheng Huang, 2019. "Link misspecification in generalized linear mixed models with a random intercept for binary responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 827-843, September.
    5. Huang, Xianzheng, 2011. "Detecting random-effects model misspecification via coarsened data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 703-714, January.
    6. Pierre Ailliot & Craig Thompson & Peter Thomson, 2009. "Space–time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 405-426, July.
    7. Anandamayee Majumdar & Corinna Gries & Jason Walker, 2011. "A non-stationary spatial generalized linear mixed model approach for studying plant diversity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1935-1950, October.
    8. Tilman M. Davies & Martin L. Hazelton, 2013. "Assessing minimum contrast parameter estimation for spatial and spatiotemporal log‐Gaussian Cox processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 355-389, November.
    9. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    10. K. Ben-Ahmed & A. Bouratbine & M. -A. El-Aroui, 2010. "Generalized linear spatial models in epidemiology: A case study of zoonotic cutaneous leishmaniasis in Tunisia," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 159-170.
    11. Higgs, Megan Dailey & Hoeting, Jennifer A., 2010. "A clipped latent variable model for spatially correlated ordered categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1999-2011, August.
    12. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.
    13. Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
    14. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    15. Victor De Oliveira, 2017. "Geostatistical Binary Data: Models, Properties And Connections," Working Papers 0151mss, College of Business, University of Texas at San Antonio.
    16. Stephen A Matthews & Tse-Chuan Yang & Karen L Hayslett & R Barry Ruback, 2010. "Built Environment and Property Crime in Seattle, 1998–2000: A Bayesian Analysis," Environment and Planning A, , vol. 42(6), pages 1403-1420, June.
    17. Pierrette Chagneau & Frédéric Mortier & Nicolas Picard & Jean-Noël Bacro, 2011. "A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields," Biometrics, The International Biometric Society, vol. 67(1), pages 97-105, March.
    18. Gschlößl, Susanne & Czado, Claudia, 2008. "Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler?," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4184-4202, May.
    19. Marco Minozzo & Clarissa Ferrari, 2013. "Multivariate geostatistical mapping of radioactive contamination in the Maddalena Archipelago (Sardinia, Italy): spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 195-213, April.
    20. Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:4:p:525-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.