IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v50y2001i3p361-373.html
   My bibliography  Save this article

Using auxiliary data for parameter estimation with non‐ignorably missing outcomes

Author

Listed:
  • Joseph G. Ibrahim
  • Stuart R. Lipsitz
  • Nick Horton

Abstract

We propose a method for estimating parameters in generalized linear models when the outcome variable is missing for some subjects and the missing data mechanism is non‐ignorable. We assume throughout that the covariates are fully observed. One possible method for estimating the parameters is maximum likelihood with a non‐ignorable missing data model. However, caution must be used when fitting non‐ignorable missing data models because certain parameters may be inestimable for some models. Instead of fitting a non‐ignorable model, we propose the use of auxiliary information in a likelihood approach to reduce the bias, without having to specify a non‐ignorable model. The method is applied to a mental health study.

Suggested Citation

  • Joseph G. Ibrahim & Stuart R. Lipsitz & Nick Horton, 2001. "Using auxiliary data for parameter estimation with non‐ignorably missing outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 361-373.
  • Handle: RePEc:bla:jorssc:v:50:y:2001:i:3:p:361-373
    DOI: 10.1111/1467-9876.00240
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00240
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
    2. Yoshiharu Takagi & Yutaka Kano, 2019. "Bias reduction using surrogate endpoints as auxiliary variables," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 837-852, August.
    3. Dan Jackson & Ian R. White & Morven Leese, 2010. "How much can we learn about missing data?: an exploration of a clinical trial in psychiatry," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 593-612, July.
    4. Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
    5. Wang Miao & Eric J. Tchetgen Tchetgen, 2016. "On varieties of doubly robust estimators under missingness not at random with a shadow variable," Biometrika, Biometrika Trust, vol. 103(2), pages 475-482.
    6. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    7. Lei Wang & Wei Ma, 2021. "Improved empirical likelihood inference and variable selection for generalized linear models with longitudinal nonignorable dropouts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 623-647, June.
    8. Shonosuke Sugasawa & Kosuke Morikawa & Keisuke Takahata, 2022. "Bayesian semiparametric modeling of response mechanism for nonignorable missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 101-117, March.
    9. Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:50:y:2001:i:3:p:361-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.