IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v82y2020i4p997-1027.html
   My bibliography  Save this article

False discovery and its control in low rank estimation

Author

Listed:
  • Armeen Taeb
  • Parikshit Shah
  • Venkat Chandrasekaran

Abstract

Models specified by low rank matrices are ubiquitous in contemporary applications. In many of these problem domains, the row–column space structure of a low rank matrix carries information about some underlying phenomenon, and it is of interest in inferential settings to evaluate the extent to which the row–column spaces of an estimated low rank matrix signify discoveries about the phenomenon. However, in contrast with variable selection, we lack a formal framework to assess true or false discoveries in low rank estimation; in particular, the key source of difficulty is that the standard notion of a discovery is a discrete notion that is ill suited to the smooth structure underlying low rank matrices. We address this challenge via a geometric reformulation of the concept of a discovery, which then enables a natural definition in the low rank case. We describe and analyse a generalization of the stability selection method of Meinshausen and Bühlmann to control for false discoveries in low rank estimation, and we demonstrate its utility compared with previous approaches via numerical experiments.

Suggested Citation

  • Armeen Taeb & Parikshit Shah & Venkat Chandrasekaran, 2020. "False discovery and its control in low rank estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 997-1027, September.
  • Handle: RePEc:bla:jorssb:v:82:y:2020:i:4:p:997-1027
    DOI: 10.1111/rssb.12387
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12387
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Shapiro, 1982. "Weighted minimum trace factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(3), pages 243-264, September.
    2. Rajen D. Shah & Richard J. Samworth, 2013. "Variable selection with error control: another look at stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 55-80, January.
    3. Jiyeon Song & Seung Jun Shin, 2018. "Stability approach to selecting the number of principal components," Computational Statistics, Springer, vol. 33(4), pages 1923-1938, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    2. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    3. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Rejoinder on: Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 59-67, March.
    4. Jos Berge & Henk Kiers, 1991. "A numerical approach to the approximate and the exact minimum rank of a covariance matrix," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 309-315, June.
    5. Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.
    6. D García Rasines & G A Young, 2023. "Splitting strategies for post-selection inference," Biometrika, Biometrika Trust, vol. 110(3), pages 597-614.
    7. Sohrabi, Narges & Movaghari, Hadi, 2020. "Reliable factors of Capital structure: Stability selection approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 296-310.
    8. Ron Ammar & Pitchumani Sivakumar & Gabor Jarai & John Ryan Thompson, 2019. "A robust data-driven genomic signature for idiopathic pulmonary fibrosis with applications for translational model selection," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-15, April.
    9. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 1-40, March.
    10. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    11. Solari, Aldo & Djordjilović, Vera, 2022. "Multi split conformal prediction," Statistics & Probability Letters, Elsevier, vol. 184(C).
    12. Juan Armando Torres Munguía, 2024. "A model-based boosting approach to risk factors for physical intimate partner violence against women and girls in Mexico," Journal of Computational Social Science, Springer, vol. 7(2), pages 1937-1963, October.
    13. Max Grazier G'Sell & Stefan Wager & Alexandra Chouldechova & Robert Tibshirani, 2016. "Sequential selection procedures and false discovery rate control," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 423-444, March.
    14. Paul Bekker & Jan Leeuw, 1987. "The rank of reduced dispersion matrices," Psychometrika, Springer;The Psychometric Society, vol. 52(1), pages 125-135, March.
    15. Lu Lin & Feng Li, 2023. "Global debiased DC estimations for biased estimators via pro forma regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 726-758, June.
    16. Emma Schwager & Himel Mallick & Steffen Ventz & Curtis Huttenhower, 2017. "A Bayesian method for detecting pairwise associations in compositional data," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-21, November.
    17. Samuel Burer & Moshe Dror, 2012. "Newsvendor games: convex optimization of centralized inventory operations," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 707-728, October.
    18. Sonja Greven & Fabian Scheipl, 2020. "Comments on: Inference and computation with Generalized Additive Models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 343-350, June.
    19. Huang, Shih-Ting & Xie, Fang & Lederer, Johannes, 2021. "Tuning-free ridge estimators for high-dimensional generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    20. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 685-719, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:82:y:2020:i:4:p:997-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.