IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v12y1991i1p51-56.html
   My bibliography  Save this article

The roles of ISE and MISE in density estimation

Author

Listed:
  • Jones, M. C.

Abstract

There is disagreement in the literature concerning the roles of integrated squared error (ISE) and mean integrated squared error (MISE) in kernel density estimation. The issues are reviewed. If best estimation of the underlying density is truly considered to be the objective, conclusions are that ISE is more appropriate than MISE for assessing the performance of density estimates using data-based bandwidth choices and, relatedly, that, in choosing bandwidths initially, aiming for the ISE-optimal bandwidth is more appropriate than aiming for the MISE-optimal target. However, it turns out that practical procedures based on MISE considerations remain one particularly sensible way to go about making automatic bandwidth selections aimed at the ISE-optimal target. Moreover, it is then argued that hoping to be able to estimate a density well from every data set associated with it is unrealistic and that one can only expect to do well in some average sense. This leads back to a conceptual preference for MISE-related procedures, a viewpoint the author commends for general use.

Suggested Citation

  • Jones, M. C., 1991. "The roles of ISE and MISE in density estimation," Statistics & Probability Letters, Elsevier, vol. 12(1), pages 51-56, July.
  • Handle: RePEc:eee:stapro:v:12:y:1991:i:1:p:51-56
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(91)90163-L
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scott Fortmann-Roe & Richard Starfield & Wayne M Getz, 2012. "Contingent Kernel Density Estimation," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-10, February.
    2. Duc Devroye & J. Beirlant & R. Cao & R. Fraiman & P. Hall & M. Jones & Gábor Lugosi & E. Mammen & J. Marron & C. Sánchez-Sellero & J. Uña & F. Udina & L. Devroye, 1997. "Universal smoothing factor selection in density estimation: theory and practice," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(2), pages 223-320, December.
    3. Yi Jin & Yulin He & Defa Huang, 2021. "An Improved Variable Kernel Density Estimator Based on L 2 Regularization," Mathematics, MDPI, vol. 9(16), pages 1-12, August.
    4. Berwin A. TURLACH, "undated". "Bandwidth selection in kernel density estimation: a rewiew," Statistic und Oekonometrie 9307, Humboldt Universitaet Berlin.
    5. Wang, Qing & Lindsay, Bruce G., 2015. "Improving cross-validated bandwidth selection using subsampling-extrapolation techniques," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 51-71.
    6. Zhenyu Jiang & Nengxiang Ling & Zudi Lu & Dag Tj⊘stheim & Qiang Zhang, 2020. "On bandwidth choice for spatial data density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 817-840, July.
    7. Lawrence Dacuycuy, 2007. "On wage density comparisons: bandwidth selectors and test outcomes," Applied Economics Letters, Taylor & Francis Journals, vol. 14(3), pages 203-208.
    8. Mercedes Conde-Amboage & César Sánchez-Sellero, 2019. "A plug-in bandwidth selector for nonparametric quantile regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 423-450, June.
    9. Xia, Yingcun & Li, W. K., 2002. "Asymptotic Behavior of Bandwidth Selected by the Cross-Validation Method for Local Polynomial Fitting," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 265-287, November.
    10. Miguel Reyes & Mario Francisco-Fernández & Ricardo Cao, 2017. "Bandwidth selection in kernel density estimation for interval-grouped data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 527-545, September.
    11. Zudi Lu & Dag Johan Steinskog & Dag Tjøstheim & Qiwei Yao, 2009. "Adaptively varying‐coefficient spatiotemporal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 859-880, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:12:y:1991:i:1:p:51-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.