IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v180y2017i1p73-97.html
   My bibliography  Save this article

Zero-inflated modelling for characterizing coverage errors of extracts from the US Census Bureau's Master Address File

Author

Listed:
  • Derek S. Young
  • Andrew M. Raim
  • Nancy R. Johnson

Abstract

No abstract is available for this item.

Suggested Citation

  • Derek S. Young & Andrew M. Raim & Nancy R. Johnson, 2017. "Zero-inflated modelling for characterizing coverage errors of extracts from the US Census Bureau's Master Address File," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 73-97, January.
  • Handle: RePEc:bla:jorssa:v:180:y:2017:i:1:p:73-97
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssa.12183
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian Neelon & Pulak Ghosh & Patrick F. Loebs, 2013. "A spatial Poisson hurdle model for exploring geographic variation in emergency department visits," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(2), pages 389-413, February.
    2. Garay, Aldo M. & Hashimoto, Elizabeth M. & Ortega, Edwin M.M. & Lachos, Víctor H., 2011. "On estimation and influence diagnostics for zero-inflated negative binomial regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1304-1318, March.
    3. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    4. Wilson, Paul, 2015. "The misuse of the Vuong test for non-nested models to test for zero-inflation," Economics Letters, Elsevier, vol. 127(C), pages 51-53.
    5. Karlis, Dimitris & Ntzoufras, Ioannis, 2005. "Bivariate Poisson and Diagonal Inflated Bivariate Poisson Regression Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i10).
    6. Heinzl, Harald & Mittlbock, Martina, 2003. "Pseudo R-squared measures for Poisson regression models with over- or underdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 253-271, October.
    7. Virginia Recta & Murali Haran & James L. Rosenberger, 2012. "A two‐stage model for incidence and prevalence in point‐level spatial count data," Environmetrics, John Wiley & Sons, Ltd., vol. 23(2), pages 162-174, March.
    8. Martin Ridout & John Hinde & Clarice G. B. Demétrio, 2001. "A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives," Biometrics, The International Biometric Society, vol. 57(1), pages 219-223, March.
    9. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    10. Wang, Peiming, 2003. "A bivariate zero-inflated negative binomial regression model for count data with excess zeros," Economics Letters, Elsevier, vol. 78(3), pages 373-378, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Fu & Tian‐Yi Zhou & Xin Guo, 2021. "Modified Poisson regression analysis of grouped and right‐censored counts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1347-1367, October.
    2. James Gaboardi, 2020. "Validating Abstract Representations of Spatial Population Data while considering Disclosure Avoidance," Working Papers 20-5, Center for Economic Studies, U.S. Census Bureau.
    3. James Gaboardi, 2020. "Validating Abstract Representations of Spatial Population Data while considering Disclosure Avoidance," Working Papers 20-05, Center for Economic Studies, U.S. Census Bureau.
    4. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    2. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine, 2015. "Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1148-1165, June.
    3. Jussiane Nader Gonçalves & Wagner Barreto-Souza, 2020. "Flexible regression models for counts with high-inflation of zeros," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 71-95, April.
    4. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    5. Monika Stachowiak-Kudła & Janusz Kudła, 2023. "Measuring the prestige of administrative courts," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3637-3662, August.
    6. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    7. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    8. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    9. Xie, Feng-Chang & Wei, Bo-Cheng & Lin, Jin-Guan, 2009. "Score tests for zero-inflated generalized Poisson mixed regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3478-3489, July.
    10. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Ehsan Bahrami Samani & Elham Tabrizi, 2023. "Joint Linear Modeling of Mixed Data and Its Application to Email Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 175-209, May.
    12. Craig W. Carpenter & Anders Van Sandt & Rebekka Dudensing & Scott Loveridge, 2022. "Profit Pools and Determinants of Potential County-Level Manufacturing Growth," International Regional Science Review, , vol. 45(2), pages 188-224, March.
    13. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    14. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.
    15. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    16. Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2014. "Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1383-1392, June.
    17. David Dale & Andrei Sirchenko, 2021. "Estimation of nested and zero-inflated ordered probit models," Stata Journal, StataCorp LP, vol. 21(1), pages 3-38, March.
    18. João M. C. Santos Silva, 2017. "Local maxima in the estimation of the ZINB and sample selection models," United Kingdom Stata Users' Group Meetings 2017 07, Stata Users Group.
    19. Christian Balcells, 2022. "Determinants of firm boundaries and organizational performance: an empirical investigation of the Chilean truck market," Journal of Evolutionary Economics, Springer, vol. 32(2), pages 423-461, April.
    20. Danny Pfeffermann & Arie Preminger, 2021. "Estimation Under Mode Effects and Proxy Surveys, Accounting for Non-ignorable Nonresponse," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 779-813, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:180:y:2017:i:1:p:73-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.