IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v170y2007i3p735-758.html
   My bibliography  Save this article

Theoretic and empirical data‐inclusive process characterization

Author

Listed:
  • Vladimir B. Bokov

Abstract

Summary. In process characterization the quality of information that is obtained depends directly on the quality of process model. The current quality revolution is now providing a strong stimulus for rethinking and re‐evaluating many statistical ideas. Among these are the role of theoretic knowledge and data in statistical inference and some issues in theoretic–empirical modelling. With this concern the paper takes a broad, pragmatic view of statistical inference to include all aspects of model formulation. The estimation of model parameters traditionally assumes that a model has a prespecified known form and takes no account of possible uncertainty regarding model structure. But in practice model structural uncertainty is a fact of life and is likely to be more serious than other sources of uncertainty which have received far more attention. This is true whether the model is specified on subject‐matter grounds or when a model is formulated, fitted and checked on the same data set in an iterative interactive way. For that reason novel modelling techniques have been fashioned for reducing model uncertainty. Using available knowledge for theoretic model elaboration the techniques that have been created approximate the exact unknown process model concurrently by accessible theoretic and polynomial empirical functions. The paper examines the effects of uncertainty for hybrid theoretic–empirical models and, for reducing uncertainty, additive and multiplicative methods of model formulation are fashioned. Such modelling techniques have been successfully applied to perfect a steady flow model for an air gauge sensor. Validation of the models elaborated has revealed that the multiplicative modelling approach allows us to attain a satisfactory model with small discrepancy from empirical evidence.

Suggested Citation

  • Vladimir B. Bokov, 2007. "Theoretic and empirical data‐inclusive process characterization," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(3), pages 735-758, July.
  • Handle: RePEc:bla:jorssa:v:170:y:2007:i:3:p:735-758
    DOI: 10.1111/j.1467-985X.2007.00474.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2007.00474.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2007.00474.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    2. George Box, 1994. "Statistics and Quality Improvement," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(2), pages 209-229, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hubbard, Raymond & Lindsay, R. Murray, 2013. "From significant difference to significant sameness: Proposing a paradigm shift in business research," Journal of Business Research, Elsevier, vol. 66(9), pages 1377-1388.
    2. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    3. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    4. Sai Ding & John Knight, 2011. "Why has China Grown So Fast? The Role of Physical and Human Capital Formation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(2), pages 141-174, April.
    5. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    6. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    7. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    8. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    9. Johan Verbeeck & Martin Geroldinger & Konstantin Thiel & Andrew Craig Hooker & Sebastian Ueckert & Mats Karlsson & Arne Cornelius Bathke & Johann Wolfgang Bauer & Geert Molenberghs & Georg Zimmermann, 2023. "How to analyze continuous and discrete repeated measures in small‐sample cross‐over trials?," Biometrics, The International Biometric Society, vol. 79(4), pages 3998-4011, December.
    10. Coleman, Stephen, 2005. "Testing Theories with Qualitative and Quantitative Predictions," MPRA Paper 105171, University Library of Munich, Germany.
    11. Ewout W. Steyerberg, 2005. "Local Applicability of Clinical and Model-Based Probability Estimates," Medical Decision Making, , vol. 25(6), pages 678-680, November.
    12. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    13. Brooks, Jeremy S., 2010. "The Buddha mushroom: Conservation behavior and the development of institutions in Bhutan," Ecological Economics, Elsevier, vol. 69(4), pages 779-795, February.
    14. Ebersberger, Bernd & Galia, Fabrice & Laursen, Keld & Salter, Ammon, 2021. "Inbound Open Innovation and Innovation Performance: A Robustness Study," Research Policy, Elsevier, vol. 50(7).
    15. Brian Knaeble & Seth Dutter, 2017. "Reversals of Least-Square Estimates and Model-Invariant Estimation for Directions of Unique Effects," The American Statistician, Taylor & Francis Journals, vol. 71(2), pages 97-105, April.
    16. John Knight & Sai Ding, 2008. "Why has China Grown so Fast? The Role of Structural Change," Economics Series Working Papers 415, University of Oxford, Department of Economics.
    17. Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
    18. Steven M. Shugan, 2002. "In Search of Data: An Editorial," Marketing Science, INFORMS, vol. 21(4), pages 369-377.
    19. Fletcher, David & Dillingham, Peter W., 2011. "Model-averaged confidence intervals for factorial experiments," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3041-3048, November.
    20. Liu, Min & He, Honglin & Ren, Xiaoli & Sun, Xiaomin & Yu, Guirui & Han, Shijie & Wang, Huimin & Zhou, Guoyi, 2015. "The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems," Ecological Modelling, Elsevier, vol. 303(C), pages 30-41.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:170:y:2007:i:3:p:735-758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.