IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v74y2023i7p775-790.html
   My bibliography  Save this article

Stepping beyond your comfort zone: Diffusion‐based network analytics for knowledge trajectory recommendation

Author

Listed:
  • Yi Zhang
  • Mengjia Wu
  • Guangquan Zhang
  • Jie Lu

Abstract

Predicting a researcher's knowledge trajectories beyond their current foci can leverage potential inter‐/cross‐/multi‐disciplinary interactions to achieve exploratory innovation. In this study, we present a method of diffusion‐based network analytics for knowledge trajectory recommendation. The method begins by constructing a heterogeneous bibliometric network consisting of a co‐topic layer and a co‐authorship layer. A novel link prediction approach with a diffusion strategy is then used to capture the interactions between social elements (e.g., collaboration) and knowledge elements (e.g., technological similarity) in the process of exploratory innovation. This diffusion strategy differentiates the interactions occurring among homogeneous and heterogeneous nodes in the heterogeneous bibliometric network and weights the strengths of these interactions. Two sets of experiments—one with a local dataset and the other with a global dataset—demonstrate that the proposed method is prior to 10 selected baselines in link prediction, recommender systems, and upstream graph representation learning. A case study recommending knowledge trajectories of information scientists with topical hierarchy and explainable mediators reveals the proposed method's reliability and potential practical uses in broad scenarios.

Suggested Citation

  • Yi Zhang & Mengjia Wu & Guangquan Zhang & Jie Lu, 2023. "Stepping beyond your comfort zone: Diffusion‐based network analytics for knowledge trajectory recommendation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(7), pages 775-790, July.
  • Handle: RePEc:bla:jinfst:v:74:y:2023:i:7:p:775-790
    DOI: 10.1002/asi.24754
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.24754
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.24754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
    2. An Zeng & Zhesi Shen & Jianlin Zhou & Ying Fan & Zengru Di & Yougui Wang & H. Eugene Stanley & Shlomo Havlin, 2019. "Increasing trend of scientists to switch between topics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Alhoori, Hamed & Furuta, Richard, 2017. "Recommendation of scholarly venues based on dynamic user interests," Journal of Informetrics, Elsevier, vol. 11(2), pages 553-563.
    4. Klemiński, Rajmund & Kazienko, Przemyslaw & Kajdanowicz, Tomasz, 2021. "Where should I publish? Heterogeneous, networks-based prediction of paper’s citation success," Journal of Informetrics, Elsevier, vol. 15(3).
    5. Jianshan Sun & Mingyue Zhu & Yuanchun Jiang & Yezheng Liu & Le Wu, 2021. "Hierarchical attention model for personalized tag recommendation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(2), pages 173-189, February.
    6. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    7. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    8. Justin J. P. Jansen & Frans A. J. Van Den Bosch & Henk W. Volberda, 2006. "Exploratory Innovation, Exploitative Innovation, and Performance: Effects of Organizational Antecedents and Environmental Moderators," Management Science, INFORMS, vol. 52(11), pages 1661-1674, November.
    9. Loet Leydesdorff & Ismael Rafols, 2011. "Local emergence and global diffusion of research technologies: An exploration of patterns of network formation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(5), pages 846-860, May.
    10. Steinmo, Marianne & Rasmussen, Einar, 2018. "The interplay of cognitive and relational social capital dimensions in university-industry collaboration: Overcoming the experience barrier," Research Policy, Elsevier, vol. 47(10), pages 1964-1974.
    11. Jasjit Singh, 2005. "Collaborative Networks as Determinants of Knowledge Diffusion Patterns," Management Science, INFORMS, vol. 51(5), pages 756-770, May.
    12. Corey C. Phelps, 2010. "A longitudinal study of the influence of alliance network structure and composition on firm exploratory innovation," Post-Print hal-00528392, HAL.
    13. Lu Liu & Yang Wang & Roberta Sinatra & C. Lee Giles & Chaoming Song & Dashun Wang, 2018. "Hot streaks in artistic, cultural, and scientific careers," Nature, Nature, vol. 559(7714), pages 396-399, July.
    14. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    15. Dag W. Aksnes & Liv Langfeldt & Paul Wouters, 2019. "Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories," SAGE Open, , vol. 9(1), pages 21582440198, February.
    16. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    17. Clayton M. Christensen & Rory McDonald & Elizabeth J. Altman & Jonathan E. Palmer, 2018. "Disruptive Innovation: An Intellectual History and Directions for Future Research," Journal of Management Studies, Wiley Blackwell, vol. 55(7), pages 1043-1078, November.
    18. Sorenson, Olav & Fleming, Lee, 2004. "Science and the diffusion of knowledge," Research Policy, Elsevier, vol. 33(10), pages 1615-1634, December.
    19. Yan, Erjia & Guns, Raf, 2014. "Predicting and recommending collaborations: An author-, institution-, and country-level analysis," Journal of Informetrics, Elsevier, vol. 8(2), pages 295-309.
    20. Giacomo Zanello & Xiaolan Fu & Pierre Mohnen & Marc Ventresca, 2016. "The Creation And Diffusion Of Innovation In Developing Countries: A Systematic Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 30(5), pages 884-912, December.
    21. Xiao Zhou & Lu Huang & Yi Zhang & Miaomiao Yu, 2019. "A hybrid approach to detecting technological recombination based on text mining and patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 699-737, November.
    22. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    3. Avimanyu Datta, 2016. "Antecedents To Radical Innovations: A Longitudinal Look At Firms In The Information Technology Industry By Aggregation Of Patents," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-31, October.
    4. Oerlemans, Leon & Chan, K.Y. & Knoben, Joris & Vermeulen, P.A.M., 2018. "Structural and geographical conditions for exploitative innovation : Evidence from South African manufacturing firms," Other publications TiSEM 4abcf615-a0d4-49ef-ba25-c, Tilburg University, School of Economics and Management.
    5. Zhang, Yang & Wang, Yang & Du, Haifeng & Havlin, Shlomo, 2024. "Delayed citation impact of interdisciplinary research," Journal of Informetrics, Elsevier, vol. 18(1).
    6. Nilanjana Dutt & Will Mitchell, 2020. "Searching for knowledge in response to proximate and remote problem sources: Evidence from the U.S. renewable electricity industry," Strategic Management Journal, Wiley Blackwell, vol. 41(8), pages 1412-1449, August.
    7. Hohberger, Jan & Almeida, Paul & Parada, Pedro, 2015. "The direction of firm innovation: The contrasting roles of strategic alliances and individual scientific collaborations," Research Policy, Elsevier, vol. 44(8), pages 1473-1487.
    8. Wang, Pengfei & Van De Vrande, Vareska & Jansen, Justin J.P., 2017. "Balancing exploration and exploitation in inventions: Quality of inventions and team composition," Research Policy, Elsevier, vol. 46(10), pages 1836-1850.
    9. Lu Huang & Xiang Chen & Yi Zhang & Yihe Zhu & Suyi Li & Xingxing Ni, 2021. "Dynamic network analytics for recommending scientific collaborators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 8789-8814, November.
    10. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    11. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    12. Avimanyu Datta, 2011. "Review and Extension on Ambidexterity: A Theoretical Model Integrating Networks and Absorptive Capacity," Journal of Management and Strategy, Journal of Management and Strategy, Sciedu Press, vol. 2(1), pages 2-22, March.
    13. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    14. Michael Roach & Wesley M. Cohen, 2012. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," NBER Working Papers 18292, National Bureau of Economic Research, Inc.
    15. Lobo, José & Strumsky, Deborah, 2008. "Metropolitan patenting, inventor agglomeration and social networks: A tale of two effects," Journal of Urban Economics, Elsevier, vol. 63(3), pages 871-884, May.
    16. David Rigby, 2012. "The Geography of Knowledge Relatedness and Technological Diversification in U.S. Cities," Papers in Evolutionary Economic Geography (PEEG) 1218, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Oct 2012.
    17. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
    18. Etienne Montaigne & Alfredo Coelho & Samson Zadmehran, 2021. "A comprehensive economic examination and prospects on innovation in new grapevine varieties dealing with global warming and fungal diseases," Post-Print hal-03461901, HAL.
    19. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    20. Mahmoud Ibrahim Fallatah, 2021. "Innovating in the Desert: a Network Perspective on Knowledge Creation in Developing Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(3), pages 1533-1551, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:74:y:2023:i:7:p:775-790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.