IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v12y2004i3p153-165.html
   My bibliography  Save this article

Natural language interface for multi‐agent contracting system (MACS)

Author

Listed:
  • Victoria Yoon
  • Bonnie Rubenstein Montano
  • Teresa Wilson
  • Stuart Lowry
  • Jay Liebowitz

Abstract

Facing serious imbalances in the skills and experience of our highly talented and specialized civilian workforce, the Naval Postgraduate School has initiated the External Acquisition Research Program (EARP) to promote advances in basic and applied research as related to US defense acquisition. One of the projects funded under EARP over a 2 year period is the Multi‐Agent Contracting System (MACS) project (Liebowitz et al., 2000. Journal of Knowledge‐Based Systems 13: 241–250). MACS was designed to provide advice in the pre‐award phase of a defense contract. The original version of MACS allowed users to query the system using a list of predetermined keywords from pull‐down menus. An exact string of keywords had to be used to obtain an answer from MACS, forcing the users to memorize a list of keywords. This inflexible user interface could have caused problems for those users who did not know the right keywords and, in turn, reduced the usability of MACS. The objective of this study is to extend the capability of MACS by allowing users to interface with the system using natural language. The natural language user interface will provide the users with more flexibility in formulating queries on the pre‐award contracts, increasing the user friendliness of its interface. The paper presents the methods used to develop a natural language user interface for MACS. Copyright © 2004 John Wiley & Sons, Ltd.

Suggested Citation

  • Victoria Yoon & Bonnie Rubenstein Montano & Teresa Wilson & Stuart Lowry & Jay Liebowitz, 2004. "Natural language interface for multi‐agent contracting system (MACS)," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(3), pages 153-165, July.
  • Handle: RePEc:wly:isacfm:v:12:y:2004:i:3:p:153-165
    DOI: 10.1002/isaf.245
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.245
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. E. Robertson & K. Sparck Jones, 1976. "Relevance weighting of search terms," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(3), pages 129-146, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lynda Tamine & Cécile Chouquet & Thomas Palmer, 2015. "Analysis of biomedical and health queries: Lessons learned from TREC," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(12), pages 2626-2642, December.
    2. Jean-Charles Lamirel & Claire Francois & Shadi Al Shehabi & Martial Hoffmann, 2004. "New classification quality estimators for analysis of documentary information: Application to patent analysis and web mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(3), pages 445-562, August.
    3. Jiwon Yu & Jong-Gyu Hwang & Jumi Hwang & Sung Chan Jun & Sumin Kang & Chulung Lee & Hyundong Kim, 2020. "Identification of Vacant and Emerging Technologies in Smart Mobility Through the GTM-Based Patent Map Development," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    4. Josiane Mothe, 2022. "Analytics Methods to Understand Information Retrieval Effectiveness—A Survey," Mathematics, MDPI, vol. 10(12), pages 1-25, June.
    5. Huan Wang & Jian Li & Jiapeng Wang, 2023. "Retrieving Chinese Questions and Answers Based on Deep-Learning Algorithm," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
    6. Jerry Ellig & Patrick A. McLaughlin, 2016. "The Regulatory Determinants of Railroad Safety," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 49(2), pages 371-398, September.
    7. Alexandra Dumitrescu & Simone Santini, 2021. "Full coverage of a reader's interests in context‐based information filtering," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 1011-1027, August.
    8. Edward Kai Fung Dang & Robert Wing Pong Luk & James Allan, 2022. "A retrieval model family based on the probability ranking principle for ad hoc retrieval," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(8), pages 1140-1154, August.
    9. Jean-Charles Lamirel & Shadi Al Shehabi & Claire Francois & Xavier Polanco, 2004. "Using a compound approach based on elaborated neural network for Webometrics: An example issued from the EICSTES project," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(3), pages 427-441, November.
    10. Jean-Charles Lamirel, 2012. "A new approach for automatizing the analysis of research topics dynamics: application to optoelectronics research," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(1), pages 151-166, October.
    11. Kevin W Boyack & David Newman & Russell J Duhon & Richard Klavans & Michael Patek & Joseph R Biberstine & Bob Schijvenaars & André Skupin & Nianli Ma & Katy Börner, 2011. "Clustering More than Two Million Biomedical Publications: Comparing the Accuracies of Nine Text-Based Similarity Approaches," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    12. Georgia Warren-Myers & Monique Schmidt, 2023. "The Evolving Nature (or Not) of Sustainability Communications in New Home Building in Australia," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    13. Guozhong Feng & Baiguo An & Fengqin Yang & Han Wang & Libiao Zhang, 2017. "Relevance popularity: A term event model based feature selection scheme for text classification," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-15, April.
    14. Yunlong Ma & Hongfei Lin, 2014. "A Multiple Relevance Feedback Strategy with Positive and Negative Models," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    15. Müge Akbulut & Yaşar Tonta & Howard D. White, 2020. "Related records retrieval and pennant retrieval: an exploratory case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 957-987, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:12:y:2004:i:3:p:153-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.