IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v58y2007i6p802-822.html
   My bibliography  Save this article

Stylistic text classification using functional lexical features

Author

Listed:
  • Shlomo Argamon
  • Casey Whitelaw
  • Paul Chase
  • Sobhan Raj Hota
  • Navendu Garg
  • Shlomo Levitan

Abstract

Most text analysis and retrieval work to date has focused on the topic of a text; that is, what it is about. However, a text also contains much useful information in its style, or how it is written. This includes information about its author, its purpose, feelings it is meant to evoke, and more. This article develops a new type of lexical feature for use in stylistic text classification, based on taxonomies of various semantic functions of certain choice words or phrases. We demonstrate the usefulness of such features for the stylistic text classification tasks of determining author identity and nationality, the gender of literary characters, a text's sentiment (positive/negative evaluation), and the rhetorical character of scientific journal articles. We further show how the use of functional features aids in gaining insight about stylistic differences among different kinds of texts.

Suggested Citation

  • Shlomo Argamon & Casey Whitelaw & Paul Chase & Sobhan Raj Hota & Navendu Garg & Shlomo Levitan, 2007. "Stylistic text classification using functional lexical features," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(6), pages 802-822, April.
  • Handle: RePEc:bla:jamist:v:58:y:2007:i:6:p:802-822
    DOI: 10.1002/asi.20553
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.20553
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.20553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mini Zhu & Gang Wang & Chaoping Li & Hongjun Wang & Bin Zhang, 2023. "Artificial Intelligence Classification Model for Modern Chinese Poetry in Education," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    2. Rutherford, Brian A., 2013. "A genre-theoretic approach to financial reporting research," The British Accounting Review, Elsevier, vol. 45(4), pages 297-310.
    3. Zhang, Xi & Cheng, Yihang & Chen, Aoshuang & Lytras, Miltiadis & de Pablos, Patricia Ordóñez & Zhang, Renyu, 2022. "How rumors diffuse in the infodemic: Evidence from the healthy online social change in China," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    4. Shlomo Argamon & Jeff Dodick & Paul Chase, 2008. "Language use reflects scientific methodology: A corpus-based study of peer-reviewed journal articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(2), pages 203-238, May.
    5. Yaakov HaCohen-Kerner & Daniel Miller & Yair Yigal, 2020. "The influence of preprocessing on text classification using a bag-of-words representation," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-22, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:58:y:2007:i:6:p:802-822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.