IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v89y2021i2p349-366.html
   My bibliography  Save this article

Ranks and Pseudo‐ranks—Surprising Results of Certain Rank Tests in Unbalanced Designs

Author

Listed:
  • Edgar Brunner
  • Frank Konietschke
  • Arne C. Bathke
  • Markus Pauly

Abstract

Rank‐based inference methods are applied in various disciplines, typically when procedures relying on standard normal theory are not justifiable. Various specific rank‐based methods have been developed for two and more samples and also for general factorial designs (e.g. Kruskal–Wallis test or Akritas–Arnold–Brunner test). It is the aim of the present paper (1) to demonstrate that traditional rank procedures for several samples or general factorial designs may lead to surprising results in case of unequal sample sizes as compared with equal sample sizes, (2) to explain why this is the case and (3) to provide a way to overcome these disadvantages. Theoretical investigations show that the surprising results can be explained by considering the non‐centralities of the test statistics, which may be non‐zero for the usual rank‐based procedures in case of unequal sample sizes, while they may be equal to 0 in case of equal sample sizes. A simple solution is to consider unweighted relative effects instead of weighted relative effects. The former effects are estimated by means of the so‐called pseudo‐ranks, while the usual ranks naturally lead to the latter effects. A real data example illustrates the practical meaning of the theoretical discussions.

Suggested Citation

  • Edgar Brunner & Frank Konietschke & Arne C. Bathke & Markus Pauly, 2021. "Ranks and Pseudo‐ranks—Surprising Results of Certain Rank Tests in Unbalanced Designs," International Statistical Review, International Statistical Institute, vol. 89(2), pages 349-366, August.
  • Handle: RePEc:bla:istatr:v:89:y:2021:i:2:p:349-366
    DOI: 10.1111/insr.12418
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12418
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gao, Xin & Alvo, Mayer, 2005. "A Unified Nonparametric Approach for Unbalanced Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 926-941, September.
    2. Umlauft, Maria & Placzek, Marius & Konietschke, Frank & Pauly, Markus, 2019. "Wild bootstrapping rank-based procedures: Multiple testing in nonparametric factorial repeated measures designs," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 176-192.
    3. Olivier Thas & Jan De Neve & Lieven Clement & Jean-Pierre Ottoy, 2012. "Probabilistic index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 623-671, September.
    4. Dennis Dobler & Sarah Friedrich & Markus Pauly, 2020. "Nonparametric MANOVA in meaningful effects," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 997-1022, August.
    5. Edgar Brunner & Frank Konietschke & Markus Pauly & Madan L. Puri, 2017. "Rank-based procedures in factorial designs: hypotheses about non-parametric treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1463-1485, November.
    6. Edgar Brunner & Madan Puri, 2001. "Nonparametric methods in factorial designs," Statistical Papers, Springer, vol. 42(1), pages 1-52, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga V. Demler & Ilona A. Demler, 2023. "Non-Transitivity of the Win Ratio and the Area Under the Receiver Operating Characteristics Curve (AUC): a case for evaluating the strength of stochastic comparisons," Papers 2309.01791, arXiv.org, revised Sep 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Dobler & Sarah Friedrich & Markus Pauly, 2020. "Nonparametric MANOVA in meaningful effects," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 997-1022, August.
    2. Debajit Chatterjee & Uttam Bandyopadhyay, 2019. "Testing in nonparametric ANCOVA model based on ridit reliability functional," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 327-364, April.
    3. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    4. Gunawardana, Asanka & Konietschke, Frank, 2019. "Nonparametric multiple contrast tests for general multivariate factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 165-180.
    5. Fan, Chunpeng & Zhang, Donghui, 2014. "Wald-type rank tests: A GEE approach," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 1-16.
    6. Edgar Brunner & Frank Konietschke & Markus Pauly & Madan L. Puri, 2017. "Rank-based procedures in factorial designs: hypotheses about non-parametric treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1463-1485, November.
    7. Edgar Brunner & Madan L. Puri, 2013. "Comments on the paper ‘Type I error and test power of different tests for testing interaction effects in factorial experiments’ by M. Mendes and S. Yigit (Statistica Neerlandica, 2013, pp. 1–26)," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 390-396, November.
    8. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. M. Akritas & A. Stavropoulos & C. Caroni, 2009. "Asymptotic theory of weighted -statistics based on ranks," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 177-191.
    10. Jan De Neve & Olivier Thas, 2015. "A Regression Framework for Rank Tests Based on the Probabilistic Index Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1276-1283, September.
    11. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    12. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    13. Amorim, G. & Thas, O. & Vermeulen, K. & Vansteelandt, S. & De Neve, J., 2018. "Small sample inference for probabilistic index models," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 137-148.
    14. Jentsch, Carsten & Leucht, Anne, 2014. "Bootstrapping Sample Quantiles of Discrete Data," Working Papers 14-15, University of Mannheim, Department of Economics.
    15. Lu Mao & Tuo Wang, 2021. "A class of proportional win‐fractions regression models for composite outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1265-1275, December.
    16. Denis A. Shah & Laurence V. Madden, 2013. "A comment on Mendeş and Yiğit (2013), ‘Type I error and test power of different tests for testing interaction effects in factorial experiments’, Statistica Neerlandica, 67:1–26," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 397-399, November.
    17. Konietschke, F. & Bathke, A.C. & Hothorn, L.A. & Brunner, E., 2010. "Testing and estimation of purely nonparametric effects in repeated measures designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1895-1905, August.
    18. Nowak, Claus P. & Konietschke, Frank, 2021. "Simultaneous inference for Kendall’s tau," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    19. Zimmermann, Georg & Pauly, Markus & Bathke, Arne C., 2020. "Multivariate analysis of covariance with potentially singular covariance matrices and non-normal responses," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    20. Umlauft, Maria & Placzek, Marius & Konietschke, Frank & Pauly, Markus, 2019. "Wild bootstrapping rank-based procedures: Multiple testing in nonparametric factorial repeated measures designs," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 176-192.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:89:y:2021:i:2:p:349-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.