IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v76y2008i2p247-267.html
   My bibliography  Save this article

Many‐valued Logic in Multistate and Vague Stochastic Systems

Author

Listed:
  • Kimberly F. Sellers
  • Nozer D. Singpurwalla

Abstract

The state of the art in coherent structure theory is driven by two assertions, both of which are limiting: (1) all units of a system can exist in one of two states, failed or functioning; and (2) at any point in time, each unit can exist in only one of the above states. In actuality, units can exist in more than two states, and it is possible that a unit can simultaneously exist in more than one state. This latter feature is a consequence of the view that it may not be possible to precisely define the subsets of a set of states; such subsets are called vague. The first limitation has been addressed via work labeled ‘multistate systems’; however, this work has not capitalized on the mathematics of many‐valued propositions in logic. Here, we invoke its truth tables to define the structure function of multistate systems and then harness our results in the context of vagueness. A key contribution of this paper is to argue that many‐valued logic is a common platform for studying both multistate and vague systems but, to do so, it is necessary to lean on several principles of statistical inference. L'état de l'art dans la théorie de structure cohérente est guidé par deux assertions qui sont tous deux limitants : (1) toutes les unités d'un système peuvent exister dans un de deux états, défaillant ou fonctionnant; et (2) à n'importe quel moment, chaque unité peut seulement exister dans un des susdits états. En réalité, les unités peuvent exister dans plus de deux états et c'est possible qu'une unité puisse simultanément exister dans plus d'un état. Cette dernière caractéristique est une conséquence de l'opinion qu'il ne soit peut‐être pas possible de définir avec précision les sous‐ensembles d'un ensemble d'états; on appelle de tels sous‐ensembles vagues. La première restriction a été adressée par les méthodes appelées “systèmes multi‐états”; pourtant, ces méthodes n'ont pas pris avantage des mathématiques sur les propositions multivalues en logique. Ici, nous invoquons ses tables de vérité pour définir la fonction des systémes multi‐états et exploiter ensuite nos résultats dans le contexte d'ambiguïté. Une contribution clé de ce papier est d'argumenter que la logique de plusieurs values est une plateforme commune pour étudier tant les systèmes multi‐états que les systémes vagues, mais pour faire ceci, il est nécessaire de se baser sur plusieurs principes d'inférence statistique.

Suggested Citation

  • Kimberly F. Sellers & Nozer D. Singpurwalla, 2008. "Many‐valued Logic in Multistate and Vague Stochastic Systems," International Statistical Review, International Statistical Institute, vol. 76(2), pages 247-267, August.
  • Handle: RePEc:bla:istatr:v:76:y:2008:i:2:p:247-267
    DOI: 10.1111/j.1751-5823.2008.00049.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2008.00049.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2008.00049.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Viertl, Reinhard, 2006. "Univariate statistical analysis with fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 133-147, November.
    2. Nozer D. Singpurwalla & Jane M. Booker, 2004. "Membership Functions and Probability Measures of Fuzzy Sets," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 867-877, January.
    3. Richard E. Barlow & Alexander S. Wu, 1978. "Coherent Systems with Multi-State Components," Mathematics of Operations Research, INFORMS, vol. 3(4), pages 275-281, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierpaolo D’Urso & María Ángeles Gil, 2017. "Fuzzy data analysis and classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 645-657, December.
    2. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    3. Rashika Gupta & Manju Agarwal, 2006. "Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 257-277, November.
    4. Sheng, Yuhong & Ke, Hua, 2020. "Reliability evaluation of uncertain k-out-of-n systems with multiple states," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    5. Muhammad Aslam, 2022. "Neutrosophic F-Test for Two Counts of Data from the Poisson Distribution with Application in Climatology," Stats, MDPI, vol. 5(3), pages 1-11, August.
    6. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
    7. Nourelfath, Mustapha & Châtelet, Eric & Nahas, Nabil, 2012. "Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 51-60.
    8. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Gebre, Bethel A. & Coit, David W. & Tortorella, Michael, 2006. "New insights on multi-state component criticality and importance," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 894-904.
    9. Coletti, Giulianella & Gervasi, Osvaldo & Tasso, Sergio & Vantaggi, Barbara, 2012. "Generalized Bayesian inference in a fuzzy context: From theory to a virtual reality application," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 967-980.
    10. Ahmed El-Shafie & Mahmoud Taha & Aboelmagd Noureldin, 2007. "A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 533-556, March.
    11. Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
    12. Dong, Wenjie & Liu, Sifeng & Tao, Liangyan & Cao, Yingsai & Fang, Zhigeng, 2019. "Reliability variation of multi-state components with inertial effect of deteriorating output performances," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 176-185.
    13. Serkan Eryılmaz, 2011. "A new perspective to stress–strength models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 101-115, February.
    14. Nguyen, Hung T. & Wu, Berlin, 2006. "Random and fuzzy sets in coarse data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 70-85, November.
    15. Tian, Zhigang & Zuo, Ming J., 2006. "Redundancy allocation for multi-state systems using physical programming and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1049-1056.
    16. Belmansour, Ahmed-Tidjani & Nourelfath, Mustapha, 2010. "An aggregation method for performance evaluation of a tandem homogenous production line with machines having multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1193-1201.
    17. Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Saulius Raslanas, 2016. "Evaluation of Combined Heat and Power (CHP) Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS," Sustainability, MDPI, vol. 8(6), pages 1-21, June.
    18. Giordani, Paolo, 2010. "Three-way analysis of imprecise data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 568-582, March.
    19. Ohi, Fumio, 2013. "Lattice set theoretic treatment of multi-state coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 86-90.
    20. Coletti, Giulianella & Scozzafava, Romano, 2006. "Conditional probability and fuzzy information," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 115-132, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:76:y:2008:i:2:p:247-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.