IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v67y1999i3p223-248.html
   My bibliography  Save this article

Statistical Thinking in Empirical Enquiry

Author

Listed:
  • C. J. Wild
  • M. Pfannkuch

Abstract

This paper discusses the thought processes involved in statistical problem solving in the broad sense from problem formulation to conclusions. It draws on the literature and in‐depth interviews with statistics students and practising statisticians aimed at uncovering their statistical reasoning processes. From these interviews, a four‐dimensional framework has been identified for statistical thinking in empirical enquiry. It includes an investigative cycle, an interrogative cycle, types of thinking and dispositions. We have begun to characterise these processes through models that can be used as a basis for thinking tools or frameworks for the enhancement of problem‐solving. Tools of this form would complement the mathematical models used in analysis and address areas of the process of statistical investigation that the mathematical models do not, particularly areas requiring the synthesis of problem‐contextual and statistical understanding. The central element of published definitions of statistical thinking is “variation”. We further discuss the role of variation in the statistical conception of real‐world problems, including the search for causes. Le présent article concerne les processus mentaux impliqués dans la pensée statistique prise dans un sens large, depuis la formulation de problémes jusqu'á leur solution. II tire ses sources de la littérature sur le sujet ainsi que d'entrevues auprès d'étudiants et de praticiens en statistique, concues pour indentifier leurs processus de raisonnement statistique. De ces entrevues, nous avons identifié un cadre conceptuel quadridimensionel applicable à la pensée statistique dans le domaine de la recherche empirique. Ce cadre est composé d'un cycle d'investigation, d'un cycle d'interrogation, de types de pensée et de dispositions. NOus avons amocé la caractérisation de ces processus par des modèles pouvant servir de base àla création d'outils ou cadres intellectuels aidant la résolution de poblémes. Des outils de ce types pourraient complémenter les modèles mathématiques déjà utilisés en analyse en plus de couvrir certains aspects de la recherche statistique que les modèles mathématiques ne peuvent pas satisfaire, particulièrement les aspects associés à la synthèse des types contextuel et statistique de compréhension. l'élément central apparaissant dans les définitions de la pensée statistique ayant fait l'object de publication est celui de la “variation”. Nous discutons aussi le role de la variation dans l'approche statistique de problèmes pratiques, incluant la recherche de causes.

Suggested Citation

  • C. J. Wild & M. Pfannkuch, 1999. "Statistical Thinking in Empirical Enquiry," International Statistical Review, International Statistical Institute, vol. 67(3), pages 223-248, December.
  • Handle: RePEc:bla:istatr:v:67:y:1999:i:3:p:223-248
    DOI: 10.1111/j.1751-5823.1999.tb00442.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.1999.tb00442.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.1999.tb00442.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seokmin Kang & Sungyeun Kim, 2022. "Lessons Learned from Topic Modeling Analysis of COVID-19 News to Enrich Statistics Education in Korea," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    2. Laura Muñiz-Rodríguez & Luis J. Rodríguez-Muñiz & Ángel Alsina, 2020. "Deficits in the Statistical and Probabilistic Literacy of Citizens: Effects in a World in Crisis," Mathematics, MDPI, vol. 8(11), pages 1-20, October.
    3. Roger W. Hoerl & Ronald D. Snee, 2017. "Statistical Engineering: An Idea Whose Time Has Come?," The American Statistician, Taylor & Francis Journals, vol. 71(3), pages 209-219, July.
    4. Joel B. Greenhouse & Howard J. Seltman, 2018. "On Teaching Statistical Practice: From Novice to Expert," The American Statistician, Taylor & Francis Journals, vol. 72(2), pages 147-154, April.
    5. Heejoo Suh & Sohyung Kim & Seonyoung Hwang & Sunyoung Han, 2020. "Enhancing Preservice Teachers’ Key Competencies for Promoting Sustainability in a University Statistics Course," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    6. Maria Penna & Mirian Agus & Maribel Peró-Cebollero & Joan Guàrdia-Olmos & Eliano Pessa, 2014. "The use of imagery in statistical reasoning by university undergraduate students: a preliminary study," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(1), pages 173-187, January.
    7. Anand Desai, 2008. "Quantitative methods, economics, and or models," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 640-669.
    8. Katja Prevodnik & Vasja Vehovar, 2014. "Presenting dynamics of social phenomena: should we use absolute, relative or time differences?," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(2), pages 799-816, March.
    9. Claudia Vásquez & Israel García-Alonso & María José Seckel & Ángel Alsina, 2021. "Education for Sustainable Development in Primary Education Textbooks—An Educational Approach from Statistical and Probabilistic Literacy," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    10. Ricardo Ocaña-Riola, 2016. "The Use of Statistics in Health Sciences: Situation Analysis and Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 204-219, October.
    11. Gheorghe SAVOIU & Constantin MANEA, 2013. "Dimitrie Cantemir – The First Shaper of Romanian Statistical Thinking," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 61(4), pages 12-21, December.
    12. Idris Djouahra, 2022. "Conceptual understanding of linear regression among economics students at the university center of Tipaza, Algeria," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 8(2), pages 66-83, December.
    13. Jenna Hicks & Jessica Dewey & Yaniv Brandvain & Anita Schuchardt, 2020. "Development of the Biological Variation In Experimental Design And Analysis (BioVEDA) assessment," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
    14. Patricia Belén Carrera & Luis R. Pino-Fan & Hugo Alvarado & Jesús Guadalupe Lugo-Armenta, 2021. "Practices of the Random Variable Proposed in the Chilean Mathematics Curriculum of Secondary Education," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    15. Jesús Guadalupe Lugo-Armenta & Luis Roberto Pino-Fan, 2021. "Inferential Reasoning of Secondary School Mathematics Teachers on the Chi-Square Statistic," Mathematics, MDPI, vol. 9(19), pages 1-20, September.
    16. Săvoiu, Gheorghe, 2008. "The scientifiv way of thinking in statistics, statistical physics and quantum mechanics," MPRA Paper 13558, University Library of Munich, Germany.
    17. Joan Franco Seguí & Ángel Alsina & Claudia Vásquez, 2024. "Teaching Statistics for Sustainability across Contexts: Exploring the Knowledge and Beliefs of Teachers," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    18. Theresa Büchter & Andreas Eichler & Nicole Steib & Karin Binder & Katharina Böcherer-Linder & Stefan Krauss & Markus Vogel, 2022. "How to Train Novices in Bayesian Reasoning," Mathematics, MDPI, vol. 10(9), pages 1-31, May.
    19. Claudia Vásquez & Ángel Alsina, 2021. "Analysing Probability Teaching Practices in Primary Education: What Tasks Do Teachers Implement?," Mathematics, MDPI, vol. 9(19), pages 1-21, October.
    20. Gheorghe SAVOIU, 2012. "A Philosophical Introduction to the History of Statistics’ Conceptualization," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 60(2), pages 111-119, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:67:y:1999:i:3:p:223-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.