IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v7y2003i3-4p93-116.html
   My bibliography  Save this article

Comparing the Land Requirements, Energy Savings, and Greenhouse Gas Emissions Reduction of Biobased Polymers and Bioenergy

Author

Listed:
  • Veronika Dornburg
  • Iris Lewandowski
  • Martin Patel

Abstract

This study compares energy savings and greenhouse gas (GHG) emission reductions of biobased polymers with those of bioenergy on a per unit of agricultural land‐use basis by extending existing life‐cycle assessment (LCA) studies. In view of policy goals to increase the energy supply from biomass and current efforts to produce biobased polymers in bulk, the amount of available land for the production of nonfood crops could become a limitation. Hence, given the prominence of energy and greenhouse issues in current environmental policy, it is desirable to include land demand in the comparison of different biomass options. Over the past few years, numerous LCA studies have been prepared for different types of bio‐based polymers, but only a few of these studies address the aspect of land use. This comparison shows that referring energy savings and GHG emission reduction of biobased polymers to a unit of agricultural land, instead of to a unit of polymer produced, leads to a different ranking of options. If land use is chosen as the basis of comparison, natural fiber composites and thermoplastic starch score better than bioenergy production from energy crops, whereas polylactides score comparably well and polyhydroxyalkaonates score worse. Additionally, including the use of agricultural residues for energy purposes improves the environmental performance of bio‐based polymers significantly. Moreover, it is very likely that higher production efficiencies will be achieved for biobased polymers in the medium term. Biobased polymers thus offer interesting opportunities to reduce the utilization of nonrenewable energy and to contribute to GHG mitigation in view of potentially scarce land resources.

Suggested Citation

  • Veronika Dornburg & Iris Lewandowski & Martin Patel, 2003. "Comparing the Land Requirements, Energy Savings, and Greenhouse Gas Emissions Reduction of Biobased Polymers and Bioenergy," Journal of Industrial Ecology, Yale University, vol. 7(3‐4), pages 93-116, July.
  • Handle: RePEc:bla:inecol:v:7:y:2003:i:3-4:p:93-116
    DOI: 10.1162/108819803323059424
    as

    Download full text from publisher

    File URL: https://doi.org/10.1162/108819803323059424
    Download Restriction: no

    File URL: https://libkey.io/10.1162/108819803323059424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anja Hansen & Jörn Budde & Annette Prochnow, 2016. "Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example," Sustainability, MDPI, vol. 8(7), pages 1-24, June.
    2. Sebastian Lubjuhn & Sandra Venghaus, 2024. "Unlocking the potential of the bioeconomy for climate change reduction: The optimal use of lignocellulosic biomass in Germany," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 144-159, February.
    3. Dornburg, V. & Faaij, A. & Patel, M. & Turkenburg, W.C., 2006. "Economics and GHG emission reduction of a PLA bio-refinery system—Combining bottom-up analysis with price elasticity effects," Resources, Conservation & Recycling, Elsevier, vol. 46(4), pages 377-409.
    4. Emilia Jankowska & Miranda R. Gorman & Chad J. Frischmann, 2022. "Transforming the Plastic Production System Presents Opportunities to Tackle the Climate Crisis," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    5. Broeren, Martijn L.M. & Kuling, Lody & Worrell, Ernst & Shen, Li, 2017. "Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 246-255.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:7:y:2003:i:3-4:p:93-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.