IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i3p951-963.html
   My bibliography  Save this article

Driving reactive nitrogen emissions in China: Competition between scale and efficiency

Author

Listed:
  • Yunfeng Huang
  • Shenghui Cui
  • Bing Gao
  • Wei Huang
  • Shuangying Han
  • Yuanchao Hu

Abstract

Reactive nitrogen (Nr) emissions aggravate air and water pollution across the world. The factors influencing Nr emissions have not been clearly uncovered, especially for regions under rapid economic growth. Here we modeled total Nr emissions in mainland China and analyzed factors driving their growth during the decade (2000–2010) of fastest socioeconomic development. Results show that total Nr emissions increased from 24.9 terrogram (Tg) to 35.2 Tg, a 41.7% increase with an average annual growth rate of 3.5%. Agricultural activities, including crop planting and livestock and poultry breeding, together took a substantial but decreasing share, from 75.2% in 2000 to 61.4% in 2010. Industrial wastewater discharge, energy use, and crop production are the three largest sources contributing to the Nr emissions growth. Factors related to scale (e.g., the amount of industrial energy use) led to a growth in Nr emissions, and factors related to efficiency (e.g., industrial energy use per unit of economic output) contributed to reduction. The decreasing effect of efficiency gains, however, was still unable to overcome the increasing effect of the activity scale. More in‐depth research studies on mitigation strategies are required, to inform the decoupling between socioeconomic development and Nr emissions.

Suggested Citation

  • Yunfeng Huang & Shenghui Cui & Bing Gao & Wei Huang & Shuangying Han & Yuanchao Hu, 2023. "Driving reactive nitrogen emissions in China: Competition between scale and efficiency," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 951-963, June.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:3:p:951-963
    DOI: 10.1111/jiec.13385
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13385
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yue Dong & Linyu Xu & Zhifeng Yang & Hanzhong Zheng & Lei Chen, 2020. "Aggravation of reactive nitrogen flow driven by human production and consumption in Guangzhou City China," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    4. Manuel Wenzlik & Nina Eisenmenger & Anke Schaffartzik, 2015. "What Drives Austrian Raw Material Consumption?: A Structural Decomposition Analysis for the Years 1995 to 2007," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 814-824, October.
    5. Ning Ding & Ning Liu & Bin Lu & Jianxin Yang, 2021. "Life cycle greenhouse gas emissions of aluminum based on regional industrial transfer in China," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1657-1672, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Liu & Heinz Schandl & James West & Meng Jiang & Zijian Ren & Dingjiang Chen & Bing Zhu, 2022. "Copper ore material footprints and transfers embodied in domestic and international trade of provinces in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1423-1436, August.
    2. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    3. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    4. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    5. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    6. Baležentis, Tomas & Li, Tianxiang & Chen, Xueli, 2021. "Has agricultural labor restructuring improved agricultural labor productivity in China? A decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    7. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    8. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    9. Zhang, Chenjun & Wu, Yusi & Yu, Yu, 2020. "Spatial decomposition analysis of water intensity in China," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    10. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
    11. Peng, Huaxi & Kan, Siyi & Meng, Jing & Li, Shuping & Cui, Can & Tan, Chang & Wang, Zhenyu & Wen, Quan & Guan, Dabo, 2024. "Emission accounting and drivers in South American countries," Applied Energy, Elsevier, vol. 358(C).
    12. Alajmi, Reema Gh, 2021. "Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI," Energy Policy, Elsevier, vol. 156(C).
    13. Zbigniew Golas, 2020. "The Driving Forces of Change in Energy-related CO2 Emissions in the Polish Iron and Steel Industry in 1990-2017," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 94-102.
    14. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    15. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    16. Jiabin Chen & Shaobo Wen, 2020. "Implications of Energy Intensity Ratio for Carbon Dioxide Emissions in China," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    17. Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
    18. Bianco, V. & Proskuryakova, L. & Starodubtseva, A., 2021. "Energy inequality in the Eurasian Economic Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    20. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:3:p:951-963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.