IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v17y2013i4p528-541.html
   My bibliography  Save this article

Life Cycle Energy and Climate Change Implications of Nanotechnologies

Author

Listed:
  • Hyung Chul Kim
  • Vasilis Fthenakis

Abstract

The potential environmental and health impacts of nanotechnologies triggered a recent surge of life cycle assessment (LCA) studies on nanotechnologies. Focusing on the energy use and greenhouse gas emissions impacts, we reviewed 22 LCA‐based studies on nanomaterials, coatings, photovoltaic devices, and fabrication technologies that were published until 2011. The reviewed LCA studies indicate that nanomaterials have higher cradle‐to‐gate energy demand per functional unit, and thus higher global warming impact, than their conventional counterparts. Depending on the synthesis method, carbon‐based nanoparticles (i.e., carbon nanofibers, carbon nanotubes, and fullerenes) require 1 to 900 gigajoules per kilogram (GJ/kg) of primary energy to produce, compared with ∼200 megajoules per kilogram (MJ/kg) for aluminum. This is mainly attributed to the fact that nanomaterials involve an energy‐intensive synthesis process or an additional mechanical process to reduce particle size. Most reviewed studies ascertain, however, that the cradle‐to‐grave energy demand and global warming impact from nanotechnologies at a device level are lower than from conventional technologies because nanomaterials are typically used in a small amount to improve functionality and the upgraded functionality offers more energy‐efficient operation of the device. Because of the immature status of most nanotechnologies, the studies reviewed here often rely on inventory data estimated from literature values and parametric analyses based on laboratory or prototype production, warranting future analyses to confirm the current findings.

Suggested Citation

  • Hyung Chul Kim & Vasilis Fthenakis, 2013. "Life Cycle Energy and Climate Change Implications of Nanotechnologies," Journal of Industrial Ecology, Yale University, vol. 17(4), pages 528-541, August.
  • Handle: RePEc:bla:inecol:v:17:y:2013:i:4:p:528-541
    DOI: 10.1111/j.1530-9290.2012.00538.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2012.00538.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2012.00538.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, Pei & Isaacs, Jacqueline A. & Eckelman, Matthew J., 2016. "Net energy benefits of carbon nanotube applications," Applied Energy, Elsevier, vol. 173(C), pages 624-634.
    2. Ron Chuck Macola Gabayan & Aliyu Adebayo Sulaimon & Shiferaw Regassa Jufar, 2023. "Application of Bio-Derived Alternatives for the Assured Flow of Waxy Crude Oil: A Review," Energies, MDPI, vol. 16(9), pages 1-28, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:17:y:2013:i:4:p:528-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.