IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v13y2009i6p863-880.html
   My bibliography  Save this article

The Dematerialization Potential of the Australian Economy

Author

Listed:
  • Heinz Schandl
  • Graham M. Turner

Abstract

In this article we test the long‐term dematerialization potential for Australia in terms of materials, energy, and water use as well as CO2 emissions by introducing concrete targets for major sectors. Major improvements in the construction and housing, transport and mobility, and food and nutrition sectors in the Australian economy, if coupled with significant reductions in the resource export sectors, would substantially improve the current material, energy, and emission intensive pattern of Australia's production and consumption system. Using the Australian Stocks and Flows Framework we model all system interactions to understand the contributions of large‐scale changes in technology, infrastructure, and lifestyle to decoupling the economy from the environment. The modeling shows a considerable reduction in natural resource use, while energy and water use decrease to a much lesser extent because a reduction in natural resource consumption creates a trade‐off in energy use. It also shows that trade and economic growth may continue, but at a reduced rate compared with a business‐as‐usual scenario. The findings of our modeling are discussed in light of the large body of literature on dematerialization, eco‐efficiency, and rebound effects that may occur when efficiency is increased. We argue that Australia cannot rely on incremental efficiency gains but has to undergo a sustainability transition to achieve a low carbon future to keep in line with the international effort to avoid climate change and resource use conflicts. We touch upon the institutional changes that would be required to guide a sustainability transition in the Australian economy, such as an emission trading scheme.

Suggested Citation

  • Heinz Schandl & Graham M. Turner, 2009. "The Dematerialization Potential of the Australian Economy," Journal of Industrial Ecology, Yale University, vol. 13(6), pages 863-880, December.
  • Handle: RePEc:bla:inecol:v:13:y:2009:i:6:p:863-880
    DOI: 10.1111/j.1530-9290.2009.00163.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2009.00163.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2009.00163.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. de Bruyn, S. M. & van den Bergh, J. C. J. M. & Opschoor, J. B., 1998. "Economic growth and emissions: reconsidering the empirical basis of environmental Kuznets curves," Ecological Economics, Elsevier, vol. 25(2), pages 161-175, May.
    2. Heinz Schandl & Franzi Poldy & Graham M. Turner & Thomas G. Measham & Daniel H. Walker & Nina Eisenmenger, 2008. "Australia's Resource Use Trajectories," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 669-685, October.
    3. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447, October.
    4. Selden Thomas M. & Song Daqing, 1994. "Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 27(2), pages 147-162, September.
    5. Saunders, Harry D., 2000. "A view from the macro side: rebound, backfire, and Khazzoom-Brookes," Energy Policy, Elsevier, vol. 28(6-7), pages 439-449, June.
    6. Ayres, Robert U. & van den Bergh, Jeroen C.J.M., 2005. "A theory of economic growth with material/energy resources and dematerialization: Interaction of three growth mechanisms," Ecological Economics, Elsevier, vol. 55(1), pages 96-118, October.
    7. Stockhammer, Engelbert & Hochreiter, Harald & Obermayr, Bernhard & Steiner, Klaus, 1997. "The index of sustainable economic welfare (ISEW) as an alternative to GDP in measuring economic welfare. The results of the Austrian (revised) ISEW calculation 1955-1992," Ecological Economics, Elsevier, vol. 21(1), pages 19-34, April.
    8. James A. Lennox & Graham Turner & Rob Hoffman & Bert McInnis, 2004. "Modeling Basic Industries in the Australian Stocks and Flows Framework," Journal of Industrial Ecology, Yale University, vol. 8(4), pages 101-120, October.
    9. Spangenberg, Joachim H. & Lorek, Sylvia, 2002. "Environmentally sustainable household consumption: from aggregate environmental pressures to priority fields of action," Ecological Economics, Elsevier, vol. 43(2-3), pages 127-140, December.
    10. Brookes, Leonard, 2000. "Energy efficiency fallacies revisited," Energy Policy, Elsevier, vol. 28(6-7), pages 355-366, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Leigh, 2021. "Putting the Australian Economy on the Scales," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 54(1), pages 19-35, March.
    2. Chappin, Emile J.L. & van der Lei, Telli, 2014. "Adaptation of interconnected infrastructures to climate change: A socio-technical systems perspective," Utilities Policy, Elsevier, vol. 31(C), pages 10-17.
    3. Kostas Bithas & Panos Kalimeris, 2017. "The Material Intensity of Growth: Implications from the Human Scale of Production," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(3), pages 1011-1029, September.
    4. Raphael Asada & Tamás Krisztin & Fulvio di Fulvio & Florian Kraxner & Tobias Stern, 2020. "Bioeconomic transition?: Projecting consumption‐based biomass and fossil material flows to 2050," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1059-1073, October.
    5. Sigrid Kusch & Colin D. Hills, 2017. "The Link between e-Waste and GDP—New Insights from Data from the Pan-European Region," Resources, MDPI, vol. 6(2), pages 1-10, March.
    6. Ruth Lane, 2014. "Understanding the Dynamic Character of Value in Recycling Metals from Australia," Resources, MDPI, vol. 3(2), pages 1-16, April.
    7. Ta-Thi Huong & Liang Dong & Izhar Hussain Shah & Hung-Suck Park, 2021. "Exploring the Sustainability of Resource Flow and Productivity Transition in Vietnam from 1978 to 2017: MFA and DEA-Based Malmquist Productivity Index Approach," Sustainability, MDPI, vol. 13(21), pages 1-26, October.
    8. Alessio Miatto & Nargessadat Emami & Kylie Goodwin & James West & Mohammad Sadegh Taskhiri & Thomas Wiedmann & Heinz Schandl, 2024. "Australia's circular economy metrics and indicators," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 216-231, April.
    9. Arnaud Diemer, 2012. "Technology and Sustainable Development: Myth or Reality?," Chapters, in: Blandine Laperche & Nadine Levratto & Dimitri Uzunidis (ed.), Crisis, Innovation and Sustainable Development, chapter 4, Edward Elgar Publishing.
    10. LaRota-Aguilera, María José & Delgadillo-Vargas, Olga Lucía & Tello, Enric, 2022. "Sociometabolic research in Latin America: A review on advances and knowledge gaps in agroecological trends and rural perspectives," Ecological Economics, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Huesemann & Joyce Huesemann, 2008. "Will progress in science and technology avert or accelerate global collapse? A critical analysis and policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 787-825, December.
    2. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    3. Song, Tao & Zheng, Tingguo & Tong, Lianjun, 2008. "An empirical test of the environmental Kuznets curve in China: A panel cointegration approach," China Economic Review, Elsevier, vol. 19(3), pages 381-392, September.
    4. Jha, Raghbendra & Murthy, K. V. Bhanu, 2003. "An inverse global environmental Kuznets curve," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 352-368, June.
    5. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    6. C. Seri & A. de Juan Fernandez, 2021. "The relationship between economic growth and environment. Testing the EKC hypothesis for Latin American countries," Papers 2105.11405, arXiv.org.
    7. Evangelos V. Dioikitopoulos & Sugata Ghosh & Eugenia Vella, 2016. "Technological Progress, Time Perception and Environmental Sustainability," Working Papers 2016002, The University of Sheffield, Department of Economics.
    8. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    9. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    10. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.
    11. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Velasco-Fernández, Raúl & Dunlop, Tessa & Giampietro, Mario, 2020. "Fallacies of energy efficiency indicators: Recognizing the complexity of the metabolic pattern of the economy," Energy Policy, Elsevier, vol. 137(C).
    13. Hettige, Hemamala & Mani, Muthukumara & Wheeler, David, 2000. "Industrial pollution in economic development: the environmental Kuznets curve revisited," Journal of Development Economics, Elsevier, vol. 62(2), pages 445-476, August.
    14. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    15. Jie HE, 2005. "Economic Determinants for China’s Industrial SO2 Emission: Reduced vs. Structural form and the role of international trade," Working Papers 200505, CERDI.
    16. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    17. Stern, David I. & Common, Michael S., 2001. "Is There an Environmental Kuznets Curve for Sulfur?," Journal of Environmental Economics and Management, Elsevier, vol. 41(2), pages 162-178, March.
    18. Martin Neve & Bertrand Hamaide, 2017. "Environmental Kuznets Curve with Adjusted Net Savings as a Trade-Off Between Environment and Development," Australian Economic Papers, Wiley Blackwell, vol. 56(1), pages 39-58, March.
    19. Maliyamu Abudureheman & Qingzhe Jiang & Xiucheng Dong & Cong Dong, 2022. "CO 2 Emissions in China: Does the Energy Rebound Matter?," Energies, MDPI, vol. 15(12), pages 1-25, June.
    20. Dimitropoulos, John, 2007. "Energy productivity improvements and the rebound effect: An overview of the state of knowledge," Energy Policy, Elsevier, vol. 35(12), pages 6354-6363, December.

    More about this item

    JEL classification:

    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics
    • N57 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries - - - Africa; Oceania

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:13:y:2009:i:6:p:863-880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.