IDEAS home Printed from https://ideas.repec.org/a/bla/growch/v52y2021i3p1852-1865.html
   My bibliography  Save this article

Tempo‐spatial variability of urban leisure functional zones: An analysis based on geo‐big data

Author

Listed:
  • Ying Jing
  • Junjiao Shu
  • Rushan Wang
  • Xiang Zhang

Abstract

New insights into urban functional zones with a specific focus on leisure is of great significance for human‐oriented urban development. The spatiotemporal pattern of urban leisure functional zones (ULFZ) reflects to what extent human psychological needs are satisfied. This article aims to discern ULFZ and reveal their changing regularity based on the taxi trajectory data and points of interests (POIs) by the DBSCAN algorithm, latent dirichlet allocations (LDA) and spatial analytical techniques. Results are concluded as follows: 1) the spatial distribution of ULFZs are dynamic and imbalanced at various periods; 2) among urban leisure subfunctions, cultural function is severely weaker than entertaining, sportive, and tourist function; and 3) the changes in ULFZ are kind of consistent at multiple spatial scales. This research benefits the leisure‐oriented urban planning.

Suggested Citation

  • Ying Jing & Junjiao Shu & Rushan Wang & Xiang Zhang, 2021. "Tempo‐spatial variability of urban leisure functional zones: An analysis based on geo‐big data," Growth and Change, Wiley Blackwell, vol. 52(3), pages 1852-1865, September.
  • Handle: RePEc:bla:growch:v:52:y:2021:i:3:p:1852-1865
    DOI: 10.1111/grow.12526
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/grow.12526
    Download Restriction: no

    File URL: https://libkey.io/10.1111/grow.12526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beibei Yu & Zhonghui Wang & Haowei Mu & Li Sun & Fengning Hu, 2019. "Identification of Urban Functional Regions Based on Floating Car Track Data and POI Data," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    2. Yaolin Liu & Ying Jing & Enxiang Cai & Jiaxing Cui & Yang Zhang & Yiyun Chen, 2017. "How Leisure Venues Are and Why? A Geospatial Perspective in Wuhan, Central China," Sustainability, MDPI, vol. 9(10), pages 1-21, October.
    3. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinfeng Wang & Guowei Luo & Yanjia Huang & Min Liu & Yi Wei, 2023. "Spatial Characteristics and Influencing Factors of Commuting in Central Urban Areas Using Mobile Phone Data: A Case Study of Nanning," Sustainability, MDPI, vol. 15(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Davies & David C. Maré, 2020. "Delineating functional labour market areas with estimable classification stabilities," Working Papers 20_08, Motu Economic and Public Policy Research.
    2. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    4. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    5. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Ting Wang & Yong Zhang & Meiye Li & Lei Liu, 2019. "How Do Passengers with Different Using Frequencies Choose between Traditional Taxi Service and Online Car-Hailing Service? A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    7. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    8. Changhee Kim & Soo Wook Kim & Hee Jay Kang & Seung-Min Song, 2017. "What Makes Urban Transportation Efficient? Evidence from Subway Transfer Stations in Korea," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    9. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    10. Li, Xijing & Ma, Xinlin & Wilson, Bev, 2021. "Beyond absolute space: An exploration of relative and relational space in Shanghai using taxi trajectory data," Journal of Transport Geography, Elsevier, vol. 93(C).
    11. Joseph, Lucy & Neven, An & Martens, Karel & Kweka, Opportuna & Wets, Geert & Janssens, Davy, 2020. "Measuring individuals' travel behaviour by use of a GPS-based smartphone application in Dar es Salaam, Tanzania," Journal of Transport Geography, Elsevier, vol. 88(C).
    12. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    13. Apantri Peungnumsai & Apichon Witayangkurn & Masahiko Nagai & Hiroyuki Miyazaki, 2018. "A Taxi Zoning Analysis Using Large-Scale Probe Data: A Case Study for Metropolitan Bangkok," The Review of Socionetwork Strategies, Springer, vol. 12(1), pages 21-45, June.
    14. Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2022. "Revealing mobility pattern of taxi movements with its travel trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    15. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    16. Ling Zhang & Jingjing Hao & Xiaofeng Ji & Lan Liu, 2019. "Research on the Complex Characteristics of Freight Transportation from a Multiscale Perspective Using Freight Vehicle Trip Data," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    17. Zhitao Li & Xiaolu Wang & Fan Gao & Jinjun Tang & Hanmeng Xu, 2024. "Analysis of mobility patterns for urban taxi ridership: the role of the built environment," Transportation, Springer, vol. 51(4), pages 1409-1431, August.
    18. Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
    19. Jinxin Wang & Chaoran Gao & Manman Wang & Yan Zhang, 2023. "Identification of Urban Functional Areas and Urban Spatial Structure Analysis by Fusing Multi-Source Data Features: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    20. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:growch:v:52:y:2021:i:3:p:1852-1865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0017-4815 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.