IDEAS home Printed from https://ideas.repec.org/a/bla/finmgt/v49y2020i3p707-740.html
   My bibliography  Save this article

How much should portfolios shrink?

Author

Listed:
  • Chulwoo Han

Abstract

This paper develops a portfolio model that penalizes the deviation from a reference portfolio. The proposed model renders a robust portfolio that performs superior under parameter uncertainty. Penalizing the deviation also improves the performance of existing shrinkage portfolio models that are suboptimal due to model parameter uncertainty. The equal‐weight portfolio turns out to be a better reference portfolio than the currently holding portfolio even in the presence of transaction costs. A data‐driven method for determining the degree of penalization is offered. Comprehensive simulation and empirical studies suggest that the proposed model significantly outperforms various existing models.

Suggested Citation

  • Chulwoo Han, 2020. "How much should portfolios shrink?," Financial Management, Financial Management Association International, vol. 49(3), pages 707-740, September.
  • Handle: RePEc:bla:finmgt:v:49:y:2020:i:3:p:707-740
    DOI: 10.1111/fima.12282
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/fima.12282
    Download Restriction: no

    File URL: https://libkey.io/10.1111/fima.12282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    4. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    5. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    6. Nicolae Gârleanu & Lasse Heje Pedersen, 2013. "Dynamic Trading with Predictable Returns and Transaction Costs," Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
    7. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    8. Pastor, Lubos & Stambaugh, Robert F., 2000. "Comparing asset pricing models: an investment perspective," Journal of Financial Economics, Elsevier, vol. 56(3), pages 335-381, June.
    9. DeMiguel, Victor & Martín-Utrera, Alberto & Nogales, Francisco J., 2015. "Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(6), pages 1443-1471, December.
    10. Raymond Kan & Daniel R. Smith, 2008. "The Distribution of the Sample Minimum-Variance Frontier," Management Science, INFORMS, vol. 54(7), pages 1364-1380, July.
    11. Doron Avramov & Guofu Zhou, 2010. "Bayesian Portfolio Analysis," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 25-47, December.
    12. Sebastián Ceria & Robert A Stubbs, 2006. "Incorporating estimation errors into portfolio selection: Robust portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 7(2), pages 109-127, July.
    13. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    14. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    15. Kirby, Chris & Ostdiek, Barbara, 2012. "It’s All in the Timing: Simple Active Portfolio Strategies that Outperform Naïve Diversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(2), pages 437-467, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Chulwoo, 2020. "A nonparametric approach to portfolio shrinkage," Journal of Banking & Finance, Elsevier, vol. 120(C).
    2. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    3. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    4. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    5. Platanakis, Emmanouil & Sutcliffe, Charles & Ye, Xiaoxia, 2021. "Horses for courses: Mean-variance for asset allocation and 1/N for stock selection," European Journal of Operational Research, Elsevier, vol. 288(1), pages 302-317.
    6. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    7. Raymond Kan & Xiaolu Wang & Guofu Zhou, 2022. "Optimal Portfolio Choice with Estimation Risk: No Risk-Free Asset Case," Management Science, INFORMS, vol. 68(3), pages 2047-2068, March.
    8. Fabrizio Cipollini & Giampiero Gallo & Alessandro Palandri, 2020. "A Dynamic Conditional Approach to Portfolio Weights Forecasting," Econometrics Working Papers Archive 2020_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    9. Cheng Yan & Ji Yan, 2021. "Optimal and naive diversification in an emerging market: Evidence from China's A‐shares market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3740-3758, July.
    10. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    11. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
    12. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    13. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    14. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    15. Fabozzi, Frank J. & Huang, Dashan & Jiang, Fuwei & Wang, Jiexun, 2024. "What difference do new factor models make in portfolio allocation?," Journal of International Money and Finance, Elsevier, vol. 140(C).
    16. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    17. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    18. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    19. Fuertes, Ana-Maria & Zhao, Nan, 2023. "A Bayesian perspective on commodity style integration," Journal of Commodity Markets, Elsevier, vol. 30(C).
    20. David Bauder & Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2021. "Bayesian mean–variance analysis: optimal portfolio selection under parameter uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 221-242, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:finmgt:v:49:y:2020:i:3:p:707-740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/fmaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.