IDEAS home Printed from https://ideas.repec.org/a/bla/eufman/v19y2013i4p801-829.html
   My bibliography  Save this article

IRC and CRM: Modelling Framework for the ‘Basel 2.5’ Risk Measures

Author

Listed:
  • Sascha Wilkens
  • Jean†Baptiste Brunac
  • Vladimir Chorniy

Abstract

This paper presents a modelling framework for the Incremental Risk Charge (IRC) and Comprehensive Risk Measure (CRM) as the new capital requirements for market risks in a bank's trading book (‘Basel 2.5’). Both are Value†at†Risk†type measures projecting losses over a one†year capital horizon at a 99.9% confidence level and are applicable to credit flow and credit correlation instruments, respectively. With no consensus on industry standards for suitable internal models as yet, the article discusses selected risk factor models to derive simulation†based loss distributions and the associated risk figures. Example calculations and implementation aspects complement the discussion.

Suggested Citation

  • Sascha Wilkens & Jean†Baptiste Brunac & Vladimir Chorniy, 2013. "IRC and CRM: Modelling Framework for the ‘Basel 2.5’ Risk Measures," European Financial Management, European Financial Management Association, vol. 19(4), pages 801-829, September.
  • Handle: RePEc:bla:eufman:v:19:y:2013:i:4:p:801-829
    DOI: 10.1111/j.1468-036X.2013.12015.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1468-036X.2013.12015.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1468-036X.2013.12015.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Bade & Daniel Roesch & Harald Scheule, 2011. "Default and Recovery Risk Dependencies in a Simple Credit Risk Model," Published Paper Series 2011-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    2. Benjamin Bade & Daniel Rösch & Harald Scheule, 2011. "Default and Recovery Risk Dependencies in a Simple Credit Risk Model," European Financial Management, European Financial Management Association, vol. 17(1), pages 120-144, January.
    3. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    4. Robert B. Israel & Jeffrey S. Rosenthal & Jason Z. Wei, 2001. "Finding Generators for Markov Chains via Empirical Transition Matrices, with Applications to Credit Ratings," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 245-265, April.
    5. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    6. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    7. repec:uts:ppaper:v:17:y:2011:i:1:p:120-144 is not listed on IDEAS
    8. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Benjamin & Nikitopoulos, Christina Sklibosios & Schlögl, Erik, 2018. "Pricing of long-dated commodity derivatives: Do stochastic interest rates matter?," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 148-166.
    2. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, December.
    3. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    4. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    5. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    6. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    7. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    8. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    9. Y. D'Halluin & P. A. Forsyth & K. R. Vetzal & G. Labahn, 2001. "A numerical PDE approach for pricing callable bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 49-77.
    10. R.C. Stapleton & Marti G. Subrahmanyam, 1999. "The Term Structure of Interest Rate-Futures Prices," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-045, New York University, Leonard N. Stern School of Business-.
    11. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    14. repec:uts:finphd:40 is not listed on IDEAS
    15. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    16. Oh Kwon, 2009. "On the equivalence of a class of affine term structure models," Annals of Finance, Springer, vol. 5(2), pages 263-279, March.
    17. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    18. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    19. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    20. Makushkin, Mikhail & Lapshin, Victor, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    21. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:eufman:v:19:y:2013:i:4:p:801-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/efmaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.