IDEAS home Printed from https://ideas.repec.org/a/bla/coecpo/v23y2005i3p341-356.html
   My bibliography  Save this article

Multipollutant Efficiency Standards For Electricity Production

Author

Listed:
  • PETER M. SCHWARZ

Abstract

This study contains a simulation of a coal‐fired electric plant subject to multiple pollutant standards for SO2 and NOx. It shows that firms may not choose the lowest cost technology. The firm's cost‐minimizing choice is compared for three increasingly stringent standards: the 1990 Clean Air Act Amendments, the 1997 New Source Performance Standards, and the 2002 North Carolina Clean Smokestacks Act. The study finds support on cost‐benefit grounds for the 2002 North Carolina standard, which is the most stringent standard, but not for the 1997 NSPS. (JEL Q28, Q25, L94)

Suggested Citation

  • Peter M. Schwarz, 2005. "Multipollutant Efficiency Standards For Electricity Production," Contemporary Economic Policy, Western Economic Association International, vol. 23(3), pages 341-356, July.
  • Handle: RePEc:bla:coecpo:v:23:y:2005:i:3:p:341-356
    DOI: 10.1093/cep/byi026
    as

    Download full text from publisher

    File URL: https://doi.org/10.1093/cep/byi026
    Download Restriction: no

    File URL: https://libkey.io/10.1093/cep/byi026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gunnar S. Eskeland, 1997. "Air Pollution Requires Multipollutant Analysis: The Case of Santiago, Chile," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(5), pages 1636-1641.
    2. Montero, Juan-Pablo, 2001. "Multipollutant Markets," RAND Journal of Economics, The RAND Corporation, vol. 32(4), pages 762-774, Winter.
    3. Yaisawarng, Suthathip & Klein, J Douglass, 1994. "The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 447-460, August.
    4. Burtraw, Dallas & Palmer, Karen L. & Bharvirkar, Ranjit & Paul, Anthony, 2001. "Cost-Effective Reduction of NOx Emissions from Electricity Generation," Discussion Papers 10677, Resources for the Future.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Cochell & Peter Schwarz & Thomas Taylor, 2012. "Using real-time electricity data to estimate response to time-of-use and flat rates: an application to emissions," Journal of Regulatory Economics, Springer, vol. 42(2), pages 135-158, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunnar S. Eskeland & Jian Xie, 1998. "Acting Globally while Thinking Locally: Is the Global Environment Protected by Transport Emission Control Programs?," Journal of Applied Economics, Universidad del CEMA, vol. 1, pages 385-411, November.
    2. Jaraitė, Jūratė & Di Maria, Corrado, 2012. "Efficiency, productivity and environmental policy: A case study of power generation in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1557-1568.
    3. Kuosmanen, Timo & Bijsterbosch, Neil & Dellink, Rob, 2009. "Environmental cost-benefit analysis of alternative timing strategies in greenhouse gas abatement: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(6), pages 1633-1642, April.
    4. Timothy Brennan & Karen Palmer & Salvador Martinez, 2002. "Implementing Electricity Restructuring," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 99-132, June.
    5. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    6. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    7. repec:ind:nipfwp:27 is not listed on IDEAS
    8. repec:npf:wpaper:03 is not listed on IDEAS
    9. Ghisetti, Claudia & Quatraro, Francesco, 2017. "Green Technologies and Environmental Productivity: A Cross-sectoral Analysis of Direct and Indirect Effects in Italian Regions," Ecological Economics, Elsevier, vol. 132(C), pages 1-13.
    10. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    11. Murtough, Greg & Appels, David & Matysek, Anna & Lovell, C.A. Knox, 2001. "Greenhouse Gas Emissions and the Productivity Growth of Electricity Generators," Staff Research Papers 31917, Productivity Commission.
    12. Roberton Williams, 2002. "Prices vs. Quantities vs. Tradable Quantities," NBER Working Papers 9283, National Bureau of Economic Research, Inc.
    13. John K. Stranlund & Insung Son, 2019. "Prices Versus Quantities Versus Hybrids in the Presence of Co-pollutants," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 353-384, June.
    14. Ian W.H. Parry, 2005. "Fiscal Interactions and the Costs of Controlling Pollution from Electricity," RAND Journal of Economics, The RAND Corporation, vol. 36(4), pages 849-869, Winter.
    15. Leightner, Jonathan E. & Inoue, Tomoo, 2008. "Capturing climate's effect on pollution abatement with an improved solution to the omitted variables problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 540-557, December.
    16. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    17. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    18. Yang, Hongliang & Pollitt, Michael, 2010. "The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coal-fired power plants," Energy Policy, Elsevier, vol. 38(8), pages 4440-4444, August.
    19. Färe, Rolf & Pasurka, Carl & Vardanyan, Michael, 2017. "On endogenizing direction vectors in parametric directional distance function-based models," European Journal of Operational Research, Elsevier, vol. 262(1), pages 361-369.
    20. Lynes, Melissa & Featherstone, Allen, 2015. "Economic Efficiency of Utility Plants Under Renewable Energy Policy," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205674, Agricultural and Applied Economics Association.
    21. Tothmihaly, Andras & Ingram, Verina & von Cramon-Taubadel, Stephan, 2019. "How Can the Environmental Efficiency of Indonesian Cocoa Farms Be Increased?," Ecological Economics, Elsevier, vol. 158(C), pages 134-145.
    22. David Grover, 2012. "The �advancedness� of knowledge in pollutionsaving technological change with a qualitative application to SO2 cap and trade," GRI Working Papers 100, Grantham Research Institute on Climate Change and the Environment.

    More about this item

    JEL classification:

    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:coecpo:v:23:y:2005:i:3:p:341-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/weaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.