IDEAS home Printed from https://ideas.repec.org/a/bla/canjag/v58y2010is1p515-530.html
   My bibliography  Save this article

Manufacturing Firms' Demand for Water Recirculation

Author

Listed:
  • Joel Bruneau
  • Steven Renzetti
  • Michel Villeneuve

Abstract

"Relatively little is known about the factors that influence firms' water recirculation decisions. This paper estimates an econometric model that jointly considers two facets of firms' recirculation behavior: first, the discrete decision of whether to recirculate and, second, the decision of how much to recirculate. The model is estimated by applying the Heckman two-stage estimation procedure to cross-sectional data from Environment Canada's 1996 Industrial Water Use Survey. In the first stage, long-run factors, such as relative water scarcity and production technologies, are found to influence the decision whether to recirculate water. In the second stage, the imputed prices of intake water and water recirculation as well as the scale of operations are found to influence the choice of the optimal quantity of water to recirculate." Copyright (c) 2010 Canadian Agricultural Economics Society.

Suggested Citation

  • Joel Bruneau & Steven Renzetti & Michel Villeneuve, 2010. "Manufacturing Firms' Demand for Water Recirculation," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(s1), pages 515-530, December.
  • Handle: RePEc:bla:canjag:v:58:y:2010:i:s1:p:515-530
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Ronald C. Griffin, 2006. "Water Resource Economics: The Analysis of Scarcity, Policies, and Projects," MIT Press Books, The MIT Press, edition 1, volume 1, number 026207267x, December.
    2. Diane Dupont & Steven Renzetti, 2001. "The Role of Water in Manufacturing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(4), pages 411-432, April.
    3. Arnaud Reynaud, 2003. "An Econometric Estimation of Industrial Water Demand in France," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(2), pages 213-232, June.
    4. Steven Renzetti & Diane Dupont, 1999. "An Assessment of the Impact of Charging for Provincial Water Use Permits," Canadian Public Policy, University of Toronto Press, vol. 25(3), pages 361-378, September.
    5. Steven Renzetti, 1999. "Municipal Water Supply and Sewage Treatment: Costs, Prices and Distortions," Canadian Journal of Economics, Canadian Economics Association, vol. 32(3), pages 688-704, May.
    6. Steven Renzetti, 1992. "Estimating the Structure of Industrial Water Demands: The Case of Canadian Manufacturing," Land Economics, University of Wisconsin Press, vol. 68(4), pages 396-404.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elwin G. Smith & Mark E. Eiswerth & Terrence S. Veeman, 2010. "Current and Emerging Water Issues in Agriculture: An Overview," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(s1), pages 403-409, December.
    2. Randy A. Becker, 2016. "Water Use and Conservation in Manufacturing: Evidence from U.S. Microdata," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4185-4200, September.
    3. Randy A. Becker, 2016. "Water Use and Conservation in Manufacturing: Evidence from U.S. Microdata," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4185-4200, September.
    4. Jana Stoever & John P. Weche, 2018. "Environmental Regulation and Sustainable Competitiveness: Evaluating the Role of Firm-Level Green Investments in the Context of the Porter Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 429-455, June.
    5. Oscar Zapata, 2018. "Industrial Wastewater Treatment and Reuse in a Developing Country Context: Evidence at the Firm Level from Ecuador," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas Rivers & Steven Groves, 2013. "The Welfare Impact of Self-supplied Water Pricing in Canada: A Computable General Equilibrium Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(3), pages 419-445, July.
    2. Olmstead, Sheila M., 2014. "Climate change adaptation and water resource management: A review of the literature," Energy Economics, Elsevier, vol. 46(C), pages 500-509.
    3. Jeßberger Christoph & Sindram Maximilian & Zimmer Markus, 2011. "Global Warming Induced Water-Cycle Changes and Industrial Production – A Scenario Analysis for the Upper Danube River Basin," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(3), pages 415-439, June.
    4. Garcia, Serge & Reynaud, Arnaud, 2004. "Estimating the benefits of efficient water pricing in France," Resource and Energy Economics, Elsevier, vol. 26(1), pages 1-25, March.
    5. Jos順鲥s & Arnaud Reynaud & Alban Thomas, 2012. "Water reuse in Brazilian manufacturing firms," Applied Economics, Taylor & Francis Journals, vol. 44(11), pages 1417-1427, April.
    6. repec:npf:wpaper:12 is not listed on IDEAS
    7. repec:ind:nipfwp:12 is not listed on IDEAS
    8. Jason F. L. Koopman & Onno Kuik & Richard S. J. Tol & Roy Brouwer, 2017. "The potential of water markets to allocate water between industry, agriculture, and public water utilities as an adaptation mechanism to climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 325-347, February.
    9. Vallés-Giménez, Jaime & Zárate-Marco , Anabel, 2013. "Environmental taxation and industrial water use in Spain," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 25, pages 133-162.
    10. Worthington, Andrew C., 2010. "Commercial and Industrial Water Demand Estimation: Theoretical and Methodological Guidelines for Applied Economics Research/Estimación de la demanda de agua comercial e industrial: pautas teóricas y m," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 237-258, Agosto.
    11. Tobarra-González, Miguel Ángel, 2018. "The Value of Water in the Manufacture Industry and its Implications for Water Demand Policies. The Case of Chile /Valor del agua en la industria manufacturera de Chile y sus implicaciones para las pol," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 945-960, Septiembr.
    12. Steven Renzetti & Joel Brueau & Michel Villeneuve, 2009. "Self-selection bias and manufacturing firms' demand for water recirculation," Working Papers 0902, Brock University, Department of Economics, revised Feb 2009.
    13. Kumar, Surender, 2004. "Analysing industrial water demand in India: An input distance function approach," Working Papers 04/12, National Institute of Public Finance and Policy.
    14. Fernando Arbués & Maria García-Valiñas & Inmaculada Villanúa, 2010. "Urban Water Demand for Service and Industrial Use: The Case of Zaragoza," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4033-4048, November.
    15. Randy A. Becker, 2016. "Water Use and Conservation in Manufacturing: Evidence from U.S. Microdata," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4185-4200, September.
    16. Wang, Hua & Xie, Jian & Li, Honglin, 2008. "Domestic water pricing with household surveys : a study of acceptability and willingness to pay in Chongqing, China," Policy Research Working Paper Series 4690, The World Bank.
    17. José Féres & Arnaud Reynaud, 2005. "Assessing the Impact of Environmental Regulation on Industrial Water Use: Evidence from Brazil," Land Economics, University of Wisconsin Press, vol. 81(3).
    18. Dachraoui, Kaïs Harchaoui, Tarek, 2004. "Utilisation de l'eau, prix fictifs et productivité du secteur canadien des entreprises," Série de documents de recherche sur l'analyse économique (AE) 2004026f, Statistics Canada, Direction des études analytiques.
    19. Diane Dupont & Steven Renzetti, 2001. "The Role of Water in Manufacturing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(4), pages 411-432, April.
    20. Dachraoui, Kaïs Harchaoui, Tarek, 2004. "Water Use, Shadow Prices and the Canadian Business Sector Productivity Performance," Economic Analysis (EA) Research Paper Series 2004026e, Statistics Canada, Analytical Studies Branch.
    21. Ghosh, Sanchari & Willett, Keith D., 2021. "Water Permit Trading for reservoir water under competing demands and downstream flows," 2021 Annual Meeting, August 1-3, Austin, Texas 313858, Agricultural and Applied Economics Association.
    22. Dilek Uz & Steven Buck, 2020. "Comparing Water Use Forecasting Model Selection Criteria: The Case of Commercial, Institutional, and Industrial Sector in Southern California," Sustainability, MDPI, vol. 12(10), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:canjag:v:58:y:2010:i:s1:p:515-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.