IDEAS home Printed from https://ideas.repec.org/a/bla/buecrs/v74y2022i3p838-853.html
   My bibliography  Save this article

Endogenous catch per unit effort and congestion externalities between vessels in a search‐matching model: Evidence from the French Guiana shrimp fishery

Author

Listed:
  • Nicolas Sanz
  • Bassirou Diop

Abstract

This paper aims at explaining the recent rise in profits in the French Guiana shrimp fishery (FGSF) despite the overall fall in activity observed between 1990 and 2009. We develop a stochastic search‐matching version of the usual Cobb–Douglas bioeconomic fishery model. In this version catch per unit effort becomes endogenous, decreasing in the ratio of empty vessels to escaped fish, which we call “anthropic pressure” and which is determined by standard profit maximization. We first estimate the stochastic harvest function, which exhibits nearly constant returns to scale. We then show that a decrease in equilibrium anthropic pressure and congestion between vessels may be more than compensated by the consecutive rise in catch per unit effort. This leads to a fall in average harvesting costs and thus, to a rise in profits. In addition, we identify the condition under which a search‐matching fishery, working under open access, could reach a maximum economic yield equilibrium, which corresponds to a very particular case. Finally, the model makes it possible to evaluate the actual catch per unit effort and explain how the FGSF changed over the period considered with the help of the open access and maximum economic yield frameworks.

Suggested Citation

  • Nicolas Sanz & Bassirou Diop, 2022. "Endogenous catch per unit effort and congestion externalities between vessels in a search‐matching model: Evidence from the French Guiana shrimp fishery," Bulletin of Economic Research, Wiley Blackwell, vol. 74(3), pages 838-853, July.
  • Handle: RePEc:bla:buecrs:v:74:y:2022:i:3:p:838-853
    DOI: 10.1111/boer.12321
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/boer.12321
    Download Restriction: no

    File URL: https://libkey.io/10.1111/boer.12321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diop, Bassirou & Blanchard, Fabian & Sanz, Nicolas, 2018. "Mangrove increases resiliency of the French Guiana shrimp fishery facing global warming," Ecological Modelling, Elsevier, vol. 387(C), pages 27-37.
    2. Junjie Zhang & Martin D. Smith, 2011. "Estimation of a Generalized Fishery Model: A Two-Stage Approach," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 690-699, May.
    3. Bassirou Diop & Nicolas Sanz & Fabian Blanchard & Romain Walcker & Antoine Gardel, 2018. "The role of mangrove in the French Guiana shrimp fishery," Post-Print halshs-03420901, HAL.
    4. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    5. Martinet, Vincent & Blanchard, Fabian, 2009. "Fishery externalities and biodiversity: Trade-offs between the viability of shrimp trawling and the conservation of Frigatebirds in French Guiana," Ecological Economics, Elsevier, vol. 68(12), pages 2960-2968, October.
    6. Sethi, Gautam & Costello, Christopher & Fisher, Anthony & Hanemann, Michael & Karp, Larry, 2005. "Fishery management under multiple uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 300-318, September.
    7. Nicolas Sanz & Bassirou Diop & Fabian Blanchard & Luis Lampert, 2017. "On the influence of environmental factors on harvest: the French Guiana shrimp fishery paradox," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 233-247, April.
    8. Abbott, Joshua K. & Wilen, James E., 2011. "Dissecting the tragedy: A spatial model of behavior in the commons," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 386-401.
    9. Diop, Bassirou & Sanz, Nicolas & Duplan, Yves Jamont Junior & Guene, El Hadji Mama & Blanchard, Fabian & Pereau, Jean-Christophe & Doyen, Luc, 2018. "Maximum Economic Yield Fishery Management in the Face of Global Warming," Ecological Economics, Elsevier, vol. 154(C), pages 52-61.
    10. Christopher A. Pissarides, 2000. "Equilibrium Unemployment Theory, 2nd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161877, December.
    11. Homans, Frances R. & Wilen, James E., 1997. "A Model of Regulated Open Access Resource Use," Journal of Environmental Economics and Management, Elsevier, vol. 32(1), pages 1-21, January.
    12. Mardle, S. & Pascoe, S., 2000. "Use of evolutionary methods for bioeconomic optimization models: an application to fisheries," Agricultural Systems, Elsevier, vol. 66(1), pages 33-49, October.
    13. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Journal of Political Economy, University of Chicago Press, vol. 62(2), pages 124-124.
    14. Singh, Rajesh & Weninger, Quinn & Doyle, Matthew, 2006. "Fisheries management with stock growth uncertainty and costly capital adjustment," Journal of Environmental Economics and Management, Elsevier, vol. 52(2), pages 582-599, September.
    15. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 9, pages 178-203, Palgrave Macmillan.
    16. Doyle, Matthew & Singh, Rajesh & Weninger, Quinn, 2006. "Fisheries Management with Stock Uncertainty and Costly Capital Adjustment," Staff General Research Papers Archive 12770, Iowa State University, Department of Economics.
    17. Ling Huang & Martin D. Smith, 2014. "The Dynamic Efficiency Costs of Common-Pool Resource Exploitation," American Economic Review, American Economic Association, vol. 104(12), pages 4071-4103, December.
    18. Mangel, Marc, 1982. "Search effort and catch rates in fisheries," European Journal of Operational Research, Elsevier, vol. 11(4), pages 361-366, December.
    19. Clark, Colin W. & Munro, Gordon R., 1975. "The economics of fishing and modern capital theory: A simplified approach," Journal of Environmental Economics and Management, Elsevier, vol. 2(2), pages 92-106, December.
    20. Anthony Scott, 1955. "The Fishery: The Objectives of Sole Ownership," Journal of Political Economy, University of Chicago Press, vol. 63(2), pages 116-116.
    21. Trond Bjørndal & Jon M. Conrad & Kjell G. Salvanes, 1993. "Stock Size, Harvesting Costs, and the Potential for Extinction: The Case of Sealing," Land Economics, University of Wisconsin Press, vol. 69(2), pages 156-167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poudel, Diwakar & Sandal, Leif K. & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2012. "Do Species Interactions and Stochasticity Matter to Optimal Management of Multispecies Fisheries?," Discussion Papers 2012/1, Norwegian School of Economics, Department of Business and Management Science.
    2. Banzhaf, H. Spencer & Liu, Yaqin & Smith, Martin D. & Asche, Frank, 2024. "Non-parametric tests of behavior in the commons," Journal of Economic Behavior & Organization, Elsevier, vol. 224(C), pages 521-536.
    3. Nicolas Sanz & Bassirou Diop, 2015. "A search-matching model of fisheries," Working Papers hal-01228851, HAL.
    4. Asche, Frank & Smith, Martin D., 2010. "Trade and fisheries: Key issues for the World Trade Organization," WTO Staff Working Papers ERSD-2010-03, World Trade Organization (WTO), Economic Research and Statistics Division.
    5. van Dijk, Diana & Hendrix, Eligius M.T. & Haijema, Rene & Groeneveld, Rolf A. & van Ierland, Ekko C., 2014. "On solving a bi-level stochastic dynamic programming model for analyzing fisheries policies: Fishermen behavior and optimal fish quota," Ecological Modelling, Elsevier, vol. 272(C), pages 68-75.
    6. Sarkar, Sudipto, 2009. "Optimal fishery harvesting rules under uncertainty," Resource and Energy Economics, Elsevier, vol. 31(4), pages 272-286, November.
    7. Diana Dijk & Eligius M. T. Hendrix & Rene Haijema & Rolf A. Groeneveld & Ekko C. Ierland, 2017. "An Adjustment Restriction on Fish Quota: Resource Rents, Overcapacity and Recovery of Fish Stock," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 203-230, June.
    8. Wilen, James E., 2000. "Renewable Resource Economists and Policy: What Differences Have We Made?," Journal of Environmental Economics and Management, Elsevier, vol. 39(3), pages 306-327, May.
    9. Manuel Coelho & Jose Antonio Filipe & Manuel Alberto M. Ferreira & Rui Junqueira Lopes, 2013. "Extinction Revisited: “Allee Effect” and Irreversibility in “Schooling” Fisheries," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 3(1), pages 405-405.
    10. Costello, Christopher & Polasky, Stephen, 2008. "Optimal harvesting of stochastic spatial resources," Journal of Environmental Economics and Management, Elsevier, vol. 56(1), pages 1-18, July.
    11. Tarui, Nori & Mason, Charles F. & Polasky, Stephen & Ellis, Greg, 2008. "Cooperation in the commons with unobservable actions," Journal of Environmental Economics and Management, Elsevier, vol. 55(1), pages 37-51, January.
    12. Grafton, R. Quentin & Kompas, Tom & Chu, Long & Che, Nhu, 2010. "Maximum economic yield," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(3), pages 1-8.
    13. Gardner Brown, 2000. "Renewable Natural Resource Management and Use Without Markets," Working Papers 0025, University of Washington, Department of Economics.
    14. Martinet, Vincent & Thebaud, Olivier & Doyen, Luc, 2007. "Defining viable recovery paths toward sustainable fisheries," Ecological Economics, Elsevier, vol. 64(2), pages 411-422, December.
    15. Gordon Munro & U. Sumaila, 2015. "On the Contributions of Colin Clark to Fisheries Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(1), pages 1-17, May.
    16. Jules Selles, 2018. "Fisheries management: what uncertainties matter?," Working Papers hal-01824238, HAL.
    17. Phoebe Koundouri & Marita Laukkanen, 2004. "Stochastic Production in a Regulated Fishery:The Importance of Risk Considerations," DEOS Working Papers 0403, Athens University of Economics and Business.
    18. Pascoe, Sean & Hutton, Trevor & Hoshino, Eriko & Sporci, Miriana & Yamasaki, Satoshi & Kompas, Tom, 2020. "Effectiveness of harvest strategies in achieving multiple management objectives in a multispecies fishery," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    19. Kvamsdal, Sturla F. & Maroto, José M. & Morán, Manuel & Sandal, Leif K., 2020. "Bioeconomic modeling of seasonal fisheries," European Journal of Operational Research, Elsevier, vol. 281(2), pages 332-340.
    20. McGough Bruce & Plantinga Andrew J. & Costello Christopher, 2009. "Optimally Managing a Stochastic Renewable Resource under General Economic Conditions," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 9(1), pages 1-31, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:buecrs:v:74:y:2022:i:3:p:838-853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0307-3378 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.