IDEAS home Printed from https://ideas.repec.org/a/bla/bstrat/v33y2024i8p8233-8246.html
   My bibliography  Save this article

Greening the supply chain: Leveraging additive manufacturing for sustainable risk management

Author

Listed:
  • Shubhendu Singh
  • Subhas Chandra Misra
  • Gaurvendra Singh

Abstract

Modern supply chains face multifaceted risks due to their intricate nature, often leading to disruptions that ripple across the entire chain. However, in the era of Industry 4.0, innovative technologies such as additive manufacturing technology (AMT) promise to enhance supply chain sustainability and address environmental concerns. This study investigates the potential of AMT in mitigating supply chain risks (SCRs) through a comprehensive risk assessment framework employing the best‐worst method (BWM). Our analysis encompasses 14 SCRs grouped into four SCR categories. Analysis of the outcome reveals that AMT adoption has the most significant impact in addressing risks related to lead time fluctuations, waste generation, supplier dependency, inventory‐related risks, and logistics‐related risks. Notably, the adoption of AMT emerges as a robust strategy, significantly impacting these critical risk areas, thereby aligning with the principles of supply chain sustainability, strategic environmental management, and fostering innovation in green technologies. The implications of this study offer invaluable insights for researchers and practitioners, emphasizing the pivotal role of AMT in addressing environmental risks and promoting sustainable supply chain practices. By understanding and leveraging the potential of AMT, businesses can strategically navigate supply chain challenges while embracing environmentally conscious approaches, driving positive impacts across industries.

Suggested Citation

  • Shubhendu Singh & Subhas Chandra Misra & Gaurvendra Singh, 2024. "Greening the supply chain: Leveraging additive manufacturing for sustainable risk management," Business Strategy and the Environment, Wiley Blackwell, vol. 33(8), pages 8233-8246, December.
  • Handle: RePEc:bla:bstrat:v:33:y:2024:i:8:p:8233-8246
    DOI: 10.1002/bse.3926
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/bse.3926
    Download Restriction: no

    File URL: https://libkey.io/10.1002/bse.3926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    2. Mishra, Deepa & Sharma, R.R.K. & Kumar, Sameer & Dubey, Rameshwar, 2016. "Bridging and buffering: Strategies for mitigating supply risk and improving supply chain performance," International Journal of Production Economics, Elsevier, vol. 180(C), pages 183-197.
    3. Delic, Mia & Eyers, Daniel R., 2020. "The effect of additive manufacturing adoption on supply chain flexibility and performance: An empirical analysis from the automotive industry," International Journal of Production Economics, Elsevier, vol. 228(C).
    4. Tang, Ou & Nurmaya Musa, S., 2011. "Identifying risk issues and research advancements in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 133(1), pages 25-34, September.
    5. Kheybari, Siamak & Kazemi, Mostafa & Rezaei, Jafar, 2019. "Bioethanol facility location selection using best-worst method," Applied Energy, Elsevier, vol. 242(C), pages 612-623.
    6. Munir, Manal & Jajja, Muhammad Shakeel Sadiq & Chatha, Kamran Ali & Farooq, Sami, 2020. "Supply chain risk management and operational performance: The enabling role of supply chain integration," International Journal of Production Economics, Elsevier, vol. 227(C).
    7. Seyed Mohammad Gholami-Zanjani & Mohammad Saeed Jabalameli & Walid Klibi & Mir Saman Pishvaee, 2021. "A robust location-inventory model for food supply chains operating under disruptions with ripple effects," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 301-324, January.
    8. S. Gupta & S. Bag & S. Modgil & Ana Beatriz Lopes de Sousa Jabbour & A. Kumar, 2022. "Examining the Influence of Big Data Analytics and Additive Manufacturing on Supply Chain Risk Control and Resilience: An Empirical Study," Post-Print hal-04276056, HAL.
    9. Kamble, Sachin S. & Gunasekaran, Angappa & Gawankar, Shradha A., 2020. "Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications," International Journal of Production Economics, Elsevier, vol. 219(C), pages 179-194.
    10. Amine Belhadi & Sachin S. Kamble & Venkatesh Mani & Charbel Jose Chiappetta Jabbour & Imane Benkhati, 2022. "Building supply chain resilience and efficiency through additive manufacturing : An ambidextrous perspective on the dynamic capability view," Post-Print hal-04325568, HAL.
    11. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    12. Naghshineh, Bardia & Carvalho, Helena, 2022. "The implications of additive manufacturing technology adoption for supply chain resilience: A systematic search and review," International Journal of Production Economics, Elsevier, vol. 247(C).
    13. Jamal El Baz & Anass Cherrafi & Abla Chaouni Benabdellah & Kamar Zekhnini & Jean Noel Beka Be Nguema & Ridha Derrouiche, 2023. "Environmental Supply Chain Risk Management for Industry 4.0: A Data Mining Framework and Research Agenda," Post-Print hal-04335003, HAL.
    14. Saumyaranjan Sahoo & Arvind Upadhyay & Anil Kumar, 2023. "Circular economy practices and environmental performance: Analysing the role of big data analytics capability and responsible research and innovation," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 6029-6046, December.
    15. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    16. Lawrence V. Snyder & Zümbül Atan & Peng Peng & Ying Rong & Amanda J. Schmitt & Burcu Sinsoysal, 2016. "OR/MS models for supply chain disruptions: a review," IISE Transactions, Taylor & Francis Journals, vol. 48(2), pages 89-109, February.
    17. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basu R, Jothi & Abdulrahman, Muhammad D. & Yuvaraj, M., 2023. "Improving agility and resilience of automotive spares supply chain: The additive manufacturing enabled truck model," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    2. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    3. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    4. Sardesai, Saskia & Klingebiel, Katja, 2023. "Maintaining viability by rapid supply chain adaptation using a process capability index," Omega, Elsevier, vol. 115(C).
    5. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    6. Gerda Žigienė & Egidijus Rybakovas & Rimgailė Vaitkienė & Vaidas Gaidelys, 2022. "Setting the Grounds for the Transition from Business Analytics to Artificial Intelligence in Solving Supply Chain Risk," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    7. Sanjoy Kumar Paul & Ruhul Sarker & Daryl Essam & Paul Tae-Woo Lee, 2019. "A mathematical modelling approach for managing sudden disturbances in a three-tier manufacturing supply chain," Annals of Operations Research, Springer, vol. 280(1), pages 299-335, September.
    8. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    9. Emilia Vann Yaroson & Soumyadeb Chowdhury & Sachin Kumar Mangla & Prasanta Kumar Dey, 2024. "Unearthing the interplay between organisational resources, knowledge and industry 4.0 analytical decision support tools to achieve sustainability and supply chain wellbeing," Annals of Operations Research, Springer, vol. 342(2), pages 1321-1368, November.
    10. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
    11. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    12. Ghanei, Shima & Contreras, Ivan & Cordeau, Jean-François, 2023. "A two-stage stochastic collaborative intertwined supply network design problem under multiple disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    13. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    14. Fosso Wamba, Samuel & Queiroz, Maciel M. & Trinchera, Laura, 2024. "The role of artificial intelligence-enabled dynamic capability on environmental performance: The mediation effect of a data-driven culture in France and the USA," International Journal of Production Economics, Elsevier, vol. 268(C).
    15. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    16. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    17. Mohammed Belal Uddin & Bilkis Akhter, 2022. "Investigating the relationship between top management commitment, supply chain collaboration, and sustainable firm performance in the agro-processing supply chain," Operations Management Research, Springer, vol. 15(3), pages 1399-1417, December.
    18. Meriem Riad & Mohamed Naimi & Chafik Okar, 2024. "Enhancing Supply Chain Resilience Through Artificial Intelligence: Developing a Comprehensive Conceptual Framework for AI Implementation and Supply Chain Optimization," Logistics, MDPI, vol. 8(4), pages 1-26, November.
    19. Liu, Ming & Ding, Yueyu & Chu, Feng & Dolgui, Alexandre & Zheng, Feifeng, 2024. "Robust actions for improving supply chain resilience and viability," Omega, Elsevier, vol. 123(C).
    20. Tianyi Ding & Zongsheng Huang, 2024. "Uncovering the Research Hotspots in Supply Chain Risk Management from 2004 to 2023: A Bibliometric Analysis," Sustainability, MDPI, vol. 16(12), pages 1-20, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:bstrat:v:33:y:2024:i:8:p:8233-8246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-0836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.