IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i531p1151-1177.html
   My bibliography  Save this article

Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks Using Big Data Population Priors

Author

Listed:
  • Amanda F. Mejia
  • Mary Beth Nebel
  • Yikai Wang
  • Brian S. Caffo
  • Ying Guo

Abstract

Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical “template” ICA model where source signals—including known population brain networks and subject-specific signals—are represented as latent variables. For estimation, we derive an expectation–maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75–250% higher intra-subject reliability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Amanda F. Mejia & Mary Beth Nebel & Yikai Wang & Brian S. Caffo & Ying Guo, 2020. "Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks Using Big Data Population Priors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1151-1177, July.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1151-1177
    DOI: 10.1080/01621459.2019.1679638
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1679638
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1679638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua Lukemire & Giuseppe Pagnoni & Ying Guo, 2023. "Sparse Bayesian modeling of hierarchical independent component analysis: Reliable estimation of individual differences in brain networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3599-3611, December.
    2. Qiong Wu & Xiaoqi Huang & Adam J. Culbreth & James A. Waltz & L. Elliot Hong & Shuo Chen, 2022. "Extracting brain disease‐related connectome subgraphs by adaptive dense subgraph discovery," Biometrics, The International Biometric Society, vol. 78(4), pages 1566-1578, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1151-1177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.