IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2503-2515.html
   My bibliography  Save this article

Fast Bayesian inference for large occupancy datasets

Author

Listed:
  • Alex Diana
  • Emily Beth Dennis
  • Eleni Matechou
  • Byron John Treharne Morgan

Abstract

In recent years, the study of species' occurrence has benefited from the increased availability of large‐scale citizen‐science data. While abundance data from standardized monitoring schemes are biased toward well‐studied taxa and locations, opportunistic data are available for many taxonomic groups, from a large number of locations and across long timescales. Hence, these data provide opportunities to measure species' changes in occurrence, particularly through the use of occupancy models, which account for imperfect detection. These opportunistic datasets can be substantially large, numbering hundreds of thousands of sites, and hence present a challenge from a computational perspective, especially within a Bayesian framework. In this paper, we develop a unifying framework for Bayesian inference in occupancy models that account for both spatial and temporal autocorrelation. We make use of the Pólya‐Gamma scheme, which allows for fast inference, and incorporate spatio‐temporal random effects using Gaussian processes (GPs), for which we consider two efficient approximations: subset of regressors and nearest neighbor GPs. We apply our model to data on two UK butterfly species, one common and widespread and one rare, using records from the Butterflies for the New Millennium database, producing occupancy indices spanning 45 years. Our framework can be applied to a wide range of taxa, providing measures of variation in species' occurrence, which are used to assess biodiversity change.

Suggested Citation

  • Alex Diana & Emily Beth Dennis & Eleni Matechou & Byron John Treharne Morgan, 2023. "Fast Bayesian inference for large occupancy datasets," Biometrics, The International Biometric Society, vol. 79(3), pages 2503-2515, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2503-2515
    DOI: 10.1111/biom.13816
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13816
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mardia, K. V., 1988. "Multi-dimensional multivariate Gaussian Markov random fields with application to image processing," Journal of Multivariate Analysis, Elsevier, vol. 24(2), pages 265-284, February.
    2. Jim E. Griffin & Eleni Matechou & Andrew S. Buxton & Dimitrios Bormpoudakis & Richard A. Griffiths, 2020. "Modelling environmental DNA data; Bayesian variable selection accounting for false positive and false negative errors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(2), pages 377-392, April.
    3. Abhirup Datta & Sudipto Banerjee & Andrew O. Finley & Alan E. Gelfand, 2016. "Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 800-812, April.
    4. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    5. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    6. Hååvard Rue & Hååkon Tjelmeland, 2002. "Fitting Gaussian Markov Random Fields to Gaussian Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 31-49, March.
    7. Brian J. Reich & James S. Hodges & Vesna Zadnik, 2006. "Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1197-1206, December.
    8. Staci A. Hepler & Robert J. Erhardt, 2021. "A spatiotemporal model for multivariate occupancy data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    9. Fiske, Ian & Chandler, Richard, 2011. "unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i10).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isa Marques & Thomas Kneib & Nadja Klein, 2022. "Mitigating spatial confounding by explicitly correlating Gaussian random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    2. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    3. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    4. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    5. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    6. Zammit-Mangion, Andrew & Rougier, Jonathan, 2018. "A sparse linear algebra algorithm for fast computation of prediction variances with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 116-130.
    7. Emiko Dupont & Simon N. Wood & Nicole H. Augustin, 2022. "Spatial+: A novel approach to spatial confounding," Biometrics, The International Biometric Society, vol. 78(4), pages 1279-1290, December.
    8. Staci A. Hepler & Robert J. Erhardt, 2021. "A spatiotemporal model for multivariate occupancy data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    9. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    10. Duncan Lee & Alastair Rushworth & Sujit K. Sahu, 2014. "A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution," Biometrics, The International Biometric Society, vol. 70(2), pages 419-429, June.
    11. Donegan, Connor & Chun, Yongwan & Hughes, Amy E., 2020. "Bayesian estimation of spatial filters with Moran's eigenvectors and hierarchical shrinkage priors," OSF Preprints fah3z, Center for Open Science.
    12. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    13. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    14. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    15. Janine B. Illian & David F. R. P. Burslem, 2017. "Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 495-520, October.
    16. Trevor J. Hefley & Mevin B. Hooten & Ephraim M. Hanks & Robin E. Russell & Daniel P. Walsh, 2017. "The Bayesian Group Lasso for Confounded Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 42-59, March.
    17. Litvinenko, Alexander & Sun, Ying & Genton, Marc G. & Keyes, David E., 2019. "Likelihood approximation with hierarchical matrices for large spatial datasets," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 115-132.
    18. Joshua P. Keller & Adam A. Szpiro, 2020. "Selecting a scale for spatial confounding adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1121-1143, June.
    19. João B. M. Pereira & Widemberg S. Nobre & Igor F. L. Silva & Alexandra M. Schmidt, 2020. "Spatial confounding in hurdle multilevel beta models: the case of the Brazilian Mathematical Olympics for Public Schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1051-1073, June.
    20. Emiko Dupont & Nicole H. Augustin, 2024. "Spatial Confounding and Spatial+ for Nonlinear Covariate Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 455-470, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2503-2515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.