IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p1610-1623.html
   My bibliography  Save this article

Dimension reduction for integrative survival analysis

Author

Listed:
  • Aaron J. Molstad
  • Rohit K. Patra

Abstract

We propose a constrained maximum partial likelihood estimator for dimension reduction in integrative (e.g., pan‐cancer) survival analysis with high‐dimensional predictors. We assume that for each population in the study, the hazard function follows a distinct Cox proportional hazards model. To borrow information across populations, we assume that each of the hazard functions depend only on a small number of linear combinations of the predictors (i.e., “factors”). We estimate these linear combinations using an algorithm based on “distance‐to‐set” penalties. This allows us to impose both low‐rankness and sparsity on the regression coefficient matrix estimator. We derive asymptotic results that reveal that our estimator is more efficient than fitting a separate proportional hazards model for each population. Numerical experiments suggest that our method outperforms competitors under various data generating models. We use our method to perform a pan‐cancer survival analysis relating protein expression to survival across 18 distinct cancer types. Our approach identifies six linear combinations, depending on only 20 proteins, which explain survival across the cancer types. Finally, to validate our fitted model, we show that our estimated factors can lead to better prediction than competitors on four external datasets.

Suggested Citation

  • Aaron J. Molstad & Rohit K. Patra, 2023. "Dimension reduction for integrative survival analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1610-1623, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1610-1623
    DOI: 10.1111/biom.13736
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13736
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    2. Yuan Huang & Qingzhao Zhang & Sanguo Zhang & Jian Huang & Shuangge Ma, 2017. "Promoting Similarity of Sparsity Structures in Integrative Analysis With Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 342-350, January.
    3. Jin Liu & Jian Huang & Yawei Zhang & Qing Lan & Nathaniel Rothman & Tongzhang Zheng & Shuangge Ma, 2014. "Integrative analysis of prognosis data on multiple cancer subtypes," Biometrics, The International Biometric Society, vol. 70(3), pages 480-488, September.
    4. Arnab Kumar Maity & Anirban Bhattacharya & Bani K. Mallick & Veerabhadran Baladandayuthapani, 2020. "Bayesian data integration and variable selection for pan‐cancer survival prediction using protein expression data," Biometrics, The International Biometric Society, vol. 76(1), pages 316-325, March.
    5. Lisha Chen & Jianhua Z. Huang, 2012. "Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1533-1545, December.
    6. Yiyuan She, 2017. "Selective factor extraction in high dimensions," Biometrika, Biometrika Trust, vol. 104(1), pages 97-110.
    7. Simon, Noah & Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2011. "Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    2. Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
    3. Wan, Runzhe & Li, Yingying & Lu, Wenbin & Song, Rui, 2024. "Mining the factor zoo: Estimation of latent factor models with sufficient proxies," Journal of Econometrics, Elsevier, vol. 239(2).
    4. Haixiang Zhang & Jian Huang & Liuquan Sun, 2022. "Projection‐based and cross‐validated estimation in high‐dimensional Cox model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 353-372, March.
    5. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    6. Marija Pizurica & Yuanning Zheng & Francisco Carrillo-Perez & Humaira Noor & Wei Yao & Christian Wohlfart & Antoaneta Vladimirova & Kathleen Marchal & Olivier Gevaert, 2024. "Digital profiling of gene expression from histology images with linearized attention," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    8. Hua Xin & Yuhlong Lio & Hsien-Ching Chen & Tzong-Ru Tsai, 2024. "Zero-Inflated Binary Classification Model with Elastic Net Regularization," Mathematics, MDPI, vol. 12(19), pages 1-17, September.
    9. Jonathan Fuhr & Philipp Berens & Dominik Papies, 2024. "Estimating Causal Effects with Double Machine Learning -- A Method Evaluation," Papers 2403.14385, arXiv.org, revised Apr 2024.
    10. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    11. Simon Bussy & Mokhtar Z. Alaya & Anne‐Sophie Jannot & Agathe Guilloux, 2022. "Binacox: automatic cut‐point detection in high‐dimensional Cox model with applications in genetics," Biometrics, The International Biometric Society, vol. 78(4), pages 1414-1426, December.
    12. Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
    13. Biagini, Francesca & Groll, Andreas & Widenmann, Jan, 2013. "Intensity-based premium evaluation for unemployment insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 302-316.
    14. Benedicte Sjo Tislevoll & Monica Hellesøy & Oda Helen Eck Fagerholt & Stein-Erik Gullaksen & Aashish Srivastava & Even Birkeland & Dimitrios Kleftogiannis & Pilar Ayuda-Durán & Laure Piechaczyk & Dagi, 2023. "Early response evaluation by single cell signaling profiling in acute myeloid leukemia," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Matthew F Dixon, 2017. "A High Frequency Trade Execution Model for Supervised Learning," Papers 1710.03870, arXiv.org, revised Dec 2017.
    16. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
    17. Leandro C. Hermida & E. Michael Gertz & Eytan Ruppin, 2022. "Predicting cancer prognosis and drug response from the tumor microbiome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Zehua Chen & Yiwei Jiang, 2020. "A two-stage sequential conditional selection approach to sparse high-dimensional multivariate regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 65-90, February.
    19. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    20. Zhang, Ruoyang & Ghosh, Malay, 2022. "Ultra high-dimensional multivariate posterior contraction rate under shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 187(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1610-1623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.