IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.03870.html
   My bibliography  Save this paper

A High Frequency Trade Execution Model for Supervised Learning

Author

Listed:
  • Matthew F Dixon

Abstract

This paper introduces a high frequency trade execution model to evaluate the economic impact of supervised machine learners. Extending the concept of a confusion matrix, we present a 'trade information matrix' to attribute the expected profit and loss of the high frequency strategy under execution constraints, such as fill probabilities and position dependent trade rules, to correct and incorrect predictions. We apply the trade execution model and trade information matrix to Level II E-mini S&P 500 futures history and demonstrate an estimation approach for measuring the sensitivity of the P&L to the error of a Recurrent Neural Network. Our approach directly evaluates the performance sensitivity of a market making strategy to prediction error and augments traditional market simulation based testing.

Suggested Citation

  • Matthew F Dixon, 2017. "A High Frequency Trade Execution Model for Supervised Learning," Papers 1710.03870, arXiv.org, revised Dec 2017.
  • Handle: RePEc:arx:papers:1710.03870
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.03870
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    4. Charles Cao & Oliver Hansch & Xiaoxin Wang, 2009. "The information content of an open limit‐order book," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(1), pages 16-41, January.
    5. Seppi, Duane J, 1997. "Liquidity Provision with Limit Orders and a Strategic Specialist," The Review of Financial Studies, Society for Financial Studies, vol. 10(1), pages 103-150.
    6. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    7. Parlour, Christine A, 1998. "Price Dynamics in Limit Order Markets," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 789-816.
    8. Chávez-Casillas, Jonathan A. & Figueroa-López, José E., 2017. "A one-level limit order book model with memory and variable spread," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2447-2481.
    9. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    10. Bloomfield, Robert & O'Hara, Maureen & Saar, Gideon, 2005. "The "make or take" decision in an electronic market: Evidence on the evolution of liquidity," Journal of Financial Economics, Elsevier, vol. 75(1), pages 165-199, January.
    11. Kozhan, Roman & Salmon, Mark, 2012. "The information content of a limit order book: The case of an FX market," Journal of Financial Markets, Elsevier, vol. 15(1), pages 1-28.
    12. Simon, Noah & Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2011. "Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i05).
    13. Matthew F Dixon, 2017. "Sequence Classification of the Limit Order Book using Recurrent Neural Networks," Papers 1707.05642, arXiv.org.
    14. Justin Sirignano, 2016. "Deep Learning for Limit Order Books," Papers 1601.01987, arXiv.org, revised Jul 2016.
    15. Glosten, Lawrence R, 1994. "Is the Electronic Open Limit Order Book Inevitable?," Journal of Finance, American Finance Association, vol. 49(4), pages 1127-1161, September.
    16. Eric Budish & Peter Cramton & John Shim, 2015. "Editor's Choice The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1547-1621.
    17. Rama Cont & Adrien de Larrard, 2013. "Price Dynamics in a Markovian Limit Order Market," Post-Print hal-00552252, HAL.
    18. Ban Zheng & Eric Moulines & Frédéric Abergel, 2013. "Price jump prediction in a limit order book," Post-Print hal-00684716, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grilli, Luca & Santoro, Domenico, 2020. "How Boltzmann Entropy Improves Prediction with LSTM," MPRA Paper 100578, University Library of Munich, Germany.
    2. Yagna Patel, 2018. "Optimizing Market Making using Multi-Agent Reinforcement Learning," Papers 1812.10252, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew F Dixon, 2017. "Sequence Classification of the Limit Order Book using Recurrent Neural Networks," Papers 1707.05642, arXiv.org.
    2. Mehdi Arzandeh & Julieta Frank, 2019. "Price Discovery in Agricultural Futures Markets: Should We Look beyond the Best Bid-Ask Spread?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(5), pages 1482-1498.
    3. Tian, Xiao & Duong, Huu Nhan & Kalev, Petko S., 2019. "Information content of the limit order book for crude oil futures price volatility," Energy Economics, Elsevier, vol. 81(C), pages 584-597.
    4. Menkhoff, Lukas & Osler, Carol L. & Schmeling, Maik, 2010. "Limit-order submission strategies under asymmetric information," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2665-2677, November.
    5. Hagströmer, Björn, 2021. "Bias in the effective bid-ask spread," Journal of Financial Economics, Elsevier, vol. 142(1), pages 314-337.
    6. Hall, Anthony D. & Hautsch, Nikolaus, 2007. "Modelling the buy and sell intensity in a limit order book market," Journal of Financial Markets, Elsevier, vol. 10(3), pages 249-286, August.
    7. Arzandeh, Mehdi & Frank, Julieta, 2017. "The Information Content of the Limit Order Book," 7th Annual Canadian Agri-Food Policy Conference, January 11-13, 2017, Ottawa, ON 253251, Canadian Agricultural Economics Society.
    8. Chen, Shi & Härdle, Wolfgang & Schienle, Melanie, 2021. "High-dimensional statistical learning techniques for time-varying limit order book networks," IRTG 1792 Discussion Papers 2021-015, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    9. Mehdi Arzandeh & Julieta Frank, 2019. "Price Discovery in Agricultural Futures Markets: Should We Look beyond the Best Bid‐Ask Spread?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1482-1498, October.
    10. Stenfors, Alexis & Susai, Masayuki, 2019. "Liquidity withdrawal in the FX spot market: A cross-country study using high-frequency data," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 59(C), pages 36-57.
    11. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    12. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
    13. Burton Hollifield & Robert A. Miller & Patrik Sandås, 2004. "Empirical Analysis of Limit Order Markets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(4), pages 1027-1063.
    14. Duong, Huu Nhan & Kalev, Petko S., 2013. "Anonymity and order submissions," Pacific-Basin Finance Journal, Elsevier, vol. 25(C), pages 101-118.
    15. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2013. "Liquidity Cycles and Make/Take Fees in Electronic Markets," Journal of Finance, American Finance Association, vol. 68(1), pages 299-341, February.
    16. Hollifield, Burton & Sandås, Patrik & Miller, Robert A. & Slive, Joshua, 2002. "Liquidity Supply and Demand in Limit Order Markets," CEPR Discussion Papers 3676, C.E.P.R. Discussion Papers.
    17. Ryan Garvey & Tao Huang & Fei Wu, 2021. "Is faster or slower trading better? An examination of order type execution speed and costs," European Financial Management, European Financial Management Association, vol. 27(2), pages 326-363, March.
    18. Charles Cao & Oliver Hansch & Xiaoxin Wang, 2008. "Order Placement Strategies In A Pure Limit Order Book Market," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 31(2), pages 113-140, June.
    19. Johannes Bleher & Michael Bleher & Thomas Dimpfl, 2020. "From orders to prices: A stochastic description of the limit order book to forecast intraday returns," Papers 2004.11953, arXiv.org, revised May 2021.
    20. Jain, Pawan & Jiang, Christine, 2014. "Predicting future price volatility: Empirical evidence from an emerging limit order market," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 72-93.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.03870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.